Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining

This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.

Cluster Algorithm for Genetic Diversity

With the hardware technology advancing, the cost of storing is decreasing. Thus there is an urgent need for new techniques and tools that can intelligently and automatically assist us in transferring this data into useful knowledge. Different techniques of data mining are developed which are helpful for handling these large size databases [7]. Data mining is also finding its role in the field of biotechnology. Pedigree means the associated ancestry of a crop variety. Genetic diversity is the variation in the genetic composition of individuals within or among species. Genetic diversity depends upon the pedigree information of the varieties. Parents at lower hierarchic levels have more weightage for predicting genetic diversity as compared to the upper hierarchic levels. The weightage decreases as the level increases. For crossbreeding, the two varieties should be more and more genetically diverse so as to incorporate the useful characters of the two varieties in the newly developed variety. This paper discusses the searching and analyzing of different possible pairs of varieties selected on the basis of morphological characters, Climatic conditions and Nutrients so as to obtain the most optimal pair that can produce the required crossbreed variety. An algorithm was developed to determine the genetic diversity between the selected wheat varieties. Cluster analysis technique is used for retrieving the results.

A Study on the Effect of Variation of the Cross-sectional Area of Spiral Volute Casing for Centrifugal Pump

The impeller and the casing are the key components of a centrifugal pump. Although there have been many studies on the impeller and the volute casing of centrifugal pump, further study of the volute casing to improve the performance of centrifugal pumps is needed. In this paper, the effect of cross-sectional area on the performance of volute casing was investigated using a commercial CFD code. The performance characteristics, not only at the off-design point but also for a full type model are required these days. So we conducted numerical analysis for all operating points by using complete geometry through transient analysis. Transient analysis on the complete geometry of a real product has the advantage of simulating realistic flow. The results of this study show the variation of a performance curve by modifying the above-mentioned design parameter.

Interfacial Layer Effect on Novel p-Ni1-xO:Li/n-Si Heterojunction Solar Cells

This study fabricates p-type Ni1−xO:Li/n-Si heterojunction solar cells (P+/n HJSCs) by using radio frequency (RF) magnetron sputtering and investigates the effect of substrate temperature on photovoltaic cell properties. Grazing incidence x-ray diffraction, four point probe, and ultraviolet-visible-near infrared discover the optoelectrical properties of p-Ni1-xO thin films. The results show that p-Ni1-xO thin films deposited at 300 oC has the highest grain size (22.4 nm), average visible transmittance (~42%), and electrical resistivity (2.7 Ωcm). However, the conversion efficiency of cell is shown only 2.33% which is lower than the cell (3.39%) fabricated at room temperature. This result can be mainly attributed to interfacial layer thickness (SiOx) reduces from 2.35 nm to 1.70 nm, as verified by high-resolution transmission electron microscopy.

Behavior of Ice Melting in Natural Convention

In this paper, the ice melting in rectangular, cylindrical and conical forms, which are erected vertically against air flow, are experimentally studied in the free convection regime.The results obtained are: Nusslet Number, heat transfer coefficient andGrashof Number, and the variations of the said numbers in relation to the time. The variations of ice slab area and volume are measured, too.

Method of Intelligent Fault Diagnosis of Preload Loss for Single Nut Ball Screws through the Sensed Vibration Signals

This paper proposes method of diagnosing ball screw preload loss through the Hilbert-Huang Transform (HHT) and Multiscale entropy (MSE) process. The proposed method can diagnose ball screw preload loss through vibration signals when the machine tool is in operation. Maximum dynamic preload of 2 %, 4 %, and 6 % ball screws were predesigned, manufactured, and tested experimentally. Signal patterns are discussed and revealed using Empirical Mode Decomposition(EMD)with the Hilbert Spectrum. Different preload features are extracted and discriminated using HHT. The irregularity development of a ball screw with preload loss is determined and abstracted using MSE based on complexity perception. Experiment results show that the proposed method can predict the status of ball screw preload loss. Smart sensing for the health of the ball screw is also possible based on a comparative evaluation of MSE by the signal processing and pattern matching of EMD/HHT. This diagnosis method realizes the purposes of prognostic effectiveness on knowing the preload loss and utilizing convenience.

A Study of the Change of Damping Coefficient Regarding Minimum Displacement

This research proposes the change of damping coefficient regarding minimum displacement. From the mass with external forced and damper problem, when is the constant external forced transmitted to the understructure in the difference angle between 30 and 60 degrees. This force generates the vibration as general known; however, the objective of this problem is to have minimum displacement. As the angle is changed and the goal is the same; therefore, the damper of the system must be varied while keeping constant spring stiffness. The problem is solved by using nonlinear programming and the suitable changing of the damping coefficient is provided.

Computation of the Filtering Properties of Photonic Crystal Waveguide Discontinuities Using the Mode Matching Method

In this paper, the application of the Mode Matching (MM) method in the case of photonic crystal waveguide discontinuities is presented. The structure under consideration is divided into a number of cells, which supports a number of guided and evanescent modes. These modes can be calculated numerically by an alternative formulation of the plane wave expansion method for each frequency. A matrix equation is then formed relating the modal amplitudes at the beginning and at the end of the structure. The theory is highly efficient and accurate and can be applied to study the transmission sensitivity of photonic crystal devices due to fabrication tolerances. The accuracy of the MM method is compared to the Finite Difference Frequency Domain (FDFD) and the Adjoint Variable Method (AVM) and good agreement is observed.

Reflection of Plane Waves at Free Surface of an Initially Stressed Dissipative Medium

The paper discuses the effect of initial stresses on the reflection coefficients of plane waves in a dissipative medium. Basic governing equations are formulated in context of Biot's incremental deformation theory. These governing equations are solved analytically to obtain the dimensional phase velocities of plane waves propagating in plane of symmetry. Closed-form expressions for the reflection coefficients of P and SV waves- incident at the free surface of an initially stressed dissipative medium are obtained. Numerical computations, using these expressions, are carried out for a particular model. Computations made with the results predicted in presence and absence of the initial stresses and the results have been shown graphically. The study shows that the presence of compressive initial stresses increases the velocity of longitudinal wave (P-wave) but diminishes that of transverse wave (SV-wave). Also the numerical results presented indicate that initial stresses and dissipation might affect the reflection coefficients significantly.

A Book Cover as an Expression of Conceptualization and a Tool of Social Identity Construction: The Interpretation Based on the Example of G. Ritzer's book McDonaldization of Society

The study is based on the assumption that media products are appropriate subjects for the exploration of social and cultural identities as a keystone of value orientations of their authors, producers and target audiences. The research object of the study is the title page of the book cover of a professional publication that serves as a medium of marketing, scientific and intercultural communication, which is the result of semiotic and intercultural transfer. The study aims to answer the question whether the book cover is an expression of conceptualization and tool for social identity construction. It attempts to determine what value orientations and what concepts of social and cultural identities are hidden in the narrative structures of the book cover of the Czech translation of the book by G. Ritzer The McDonaldization of Society (1993), issued after the fall of the iron curtain in 1996 in the Czech Republic.

Verification of K-ω SST Turbulence Model for Supersonic Internal Flows

In this work, we try to find the best setting of Computational Fluid Dynamic solver available for the problems in the field of supersonic internal flows. We used the supersonic air-toair ejector to represent the typical problem in focus. There are multiple oblique shock waves, shear layers, boundary layers and normal shock interacting in the supersonic ejector making this device typical in field of supersonic inner flows. Modeling of shocks in general is demanding on the physical model of fluid, because ordinary conservation equation does not conform to real conditions in the near-shock region as found in many works. From these reasons, we decided to take special care about solver setting in this article by means of experimental approach of color Schlieren pictures and pneumatic measurement. Fast pressure transducers were used to measure unsteady static pressure in regimes with normal shock in mixing chamber. Physical behavior of ejector in several regimes is discussed. Best choice of eddy-viscosity setting is discussed on the theoretical base. The final verification of the k-ω SST is done on the base of comparison between experiment and numerical results.

Evolving Neural Networks using Moment Method for Handwritten Digit Recognition

This paper proposes a neural network weights and topology optimization using genetic evolution and the backpropagation training algorithm. The proposed crossover and mutation operators aims to adapt the networks architectures and weights during the evolution process. Through a specific inheritance procedure, the weights are transmitted from the parents to their offsprings, which allows re-exploitation of the already trained networks and hence the acceleration of the global convergence of the algorithm. In the preprocessing phase, a new feature extraction method is proposed based on Legendre moments with the Maximum entropy principle MEP as a selection criterion. This allows a global search space reduction in the design of the networks. The proposed method has been applied and tested on the well known MNIST database of handwritten digits.

The Effects of Speed on the Performance of Routing Protocols in Mobile Ad-hoc Networks

Mobile ad hoc network is a collection of mobile nodes communicating through wireless channels without any existing network infrastructure or centralized administration. Because of the limited transmission range of wireless network interfaces, multiple "hops" may be needed to exchange data across the network. Consequently, many routing algorithms have come into existence to satisfy the needs of communications in such networks. Researchers have conducted many simulations comparing the performance of these routing protocols under various conditions and constraints. One question that arises is whether speed of nodes affects the relative performance of routing protocols being studied. This paper addresses the question by simulating two routing protocols AODV and DSDV. Protocols were simulated using the ns-2 and were compared in terms of packet delivery fraction, normalized routing load and average delay, while varying number of nodes, and speed.

Study of Sugarcane Bagasse Pretreatment with Sulfuric Acid as a Step of Cellulose Obtaining

To produce sugar and ethanol, sugarcane processing generates several agricultural residues, being straw and bagasse is considered as the main among them. And what to do with this residues has been subject of many studies and experiences in an industry that, in recent years, highlighted by the ability to transform waste into valuable products such as electric power. Cellulose is the main component of these materials. It is the most common organic polymer and represents about 1.5 x 1012 tons of total production of biomass per year and is considered an almost inexhaustible source of raw material. Pretreatment with mineral acids is one of the most widely used as stage of cellulose extraction from lignocellulosic materials for solubilizing most of the hemicellulose content. This study had as goal to find the best reaction time of sugarcane bagasse pretreatment with sulfuric acid in order to minimize the losses of cellulose concomitantly with the highest possible removal of hemicellulose and lignin. It was found that the best time for this reaction was 40 minutes, in which it was reached a loss of hemicelluloses around 70% and lignin and cellulose, around 15%. Over this time, it was verified that the cellulose loss increased and there was no loss of lignin and hemicellulose.

Synthetic Transmit Aperture Method in Medical Ultrasonic Imaging

The work describes the use of a synthetic transmit aperture (STA) with a single element transmitting and all elements receiving in medical ultrasound imaging. STA technique is a novel approach to today-s commercial systems, where an image is acquired sequentially one image line at a time that puts a strict limit on the frame rate and the amount of data needed for high image quality. The STA imaging allows to acquire data simultaneously from all directions over a number of emissions, and the full image can be reconstructed. In experiments a 32-element linear transducer array with 0.48 mm inter-element spacing was used. Single element transmission aperture was used to generate a spherical wave covering the full image region. The 2D ultrasound images of wire phantom are presented obtained using the STA and commercial ultrasound scanner Antares to demonstrate the benefits of the SA imaging.

Capsule-substrate Adhesion in the Presence of Osmosis by the Immersed Interface Method

A two-dimensional thin-walled capsule of a flexible semi-permeable membrane is adhered onto a rigid planar substrate under adhesive forces (derived from a potential function) in the presence of osmosis across the membrane. The capsule is immersed in a hypotonic and diluted binary solution of a non-electrolyte solute. The Stokes flow problem is solved by the immersed interface method (IIM) with equal viscosities for the enclosed and surrounding fluid of the capsule. The numerical results obtained are verified against two simplified theoretical solutions and the agreements are good. The osmotic inflation of the adhered capsule is studied as a function of the solute concentration field, hydraulic conductivity, and the initial capsule shape. Our findings indicate that the contact length shrinks in dimension as capsule inflates in the hypotonic medium, and the equilibrium contact length does not depend on the hydraulic conductivity of the membrane and the initial shape of the capsule.

The Necessity of Optimized Management on Surface Water Sources of Zayanderood Basin

One of the efficient factors in comprehensive development of an area is to provide water sources and on the other hand the appropriate management of them. Population growth and nourishment security for such a population necessitate the achievement of constant development besides the reforming of traditional management in order to increase the profit of sources; In this case, the constant exploitation of sources for the next generations will be considered in this program. The achievement of this development without the consideration and possibility of water development will be too difficult. Zayanderood basin with 41500 areas in square kilometers contains 7 sub-basins and 20 units of hydrologic. In this basin area, from the entire environment descending, just a small part will enter into the river currents and the rest will be out of efficient usage by various ways. The most important surface current of this basin is Zayanderood River with 403 kilometers length which is originated from east slopes of Zagros mount and after draining of this basin area it will enter into Gaavkhooni pond. The existence of various sources and consumptions of water in Zayanderood basin, water transfer of the other basin areas into this basin, of course the contradiction between the upper and lower beneficiaries, the existence of worthwhile natural ecosystems such as Gaavkhooni swamp in this basin area and finally, the drought condition and lack of water in this area all necessitate the existence of comprehensive management of water sources in this central basin area of Iran as this method is a kind of management which considers the development and the management of water sources as an equilibrant way to increase the economical and social benefits. In this study, it is tried to survey the network of surface water sources of basin in upper and lower sections; at the most, according to the difficulties and deficiencies of an efficient management of water sources in this basin area, besides the difficulties of water draining and the destructive phenomenon of flood-water, the appropriate guidelines according to the region conditions are presented in order to prevent the deviation of water in upper sections and development of regions in lower sections of Zayanderood dam.

Analysis and Comparison of Image Encryption Algorithms

With the fast progression of data exchange in electronic way, information security is becoming more important in data storage and transmission. Because of widely using images in industrial process, it is important to protect the confidential image data from unauthorized access. In this paper, we analyzed current image encryption algorithms and compression is added for two of them (Mirror-like image encryption and Visual Cryptography). Implementations of these two algorithms have been realized for experimental purposes. The results of analysis are given in this paper.

Comparing the Quality of Service of Bus Companies Operating in two Cities in Brazil

The main objective of this work is to compare the quality of service of the bus companies operating in the city of Rio Branco, located in the state of Acre with the quality of service of the bus companies operating in the city of Campos, situated in the state of Rio de Janeiro, both cities in Brazil. This comparison, based on the opinion of the bus users, will determine their degree of satisfaction with the service available in both cities. The outcome of this evaluation shows the users unhappy with the quality of the service provided by the bus companies operating in both cities and the need to identify alternative solutions that may minimize the consequences caused by the main problems detected in this work. With these alternatives available, the bus companies will be able to better understand the needs of their customers in terms of manpower, service cost, time schedule, etc.

Finite Element Solution of Navier-Stokes Equations for Steam Flow and Heat Transfer

Computational simulation of steam flow and heat transfer in power plant condensers on the basis of the threedimensional mathematical model for the flow through porous media is presented. In order to solve the mathematical model of steam flow and heat transfer in power plant condensers, the Streamline Upwind Petrov-Galerkin finite element method is applied. By comparison of the results of simulation with experimental results about an experimental condenser, it is confirmed that SUPG finite element method can be successfully applied for solving the three-dimensional mathematical model of steam flow and heat transfer in power plant condensers.