A Perceptual Image Coding method of High Compression Rate

In the framework of the image compression by Wavelet Transforms, we propose a perceptual method by incorporating Human Visual System (HVS) characteristics in the quantization stage. Indeed, human eyes haven-t an equal sensitivity across the frequency bandwidth. Therefore, the clarity of the reconstructed images can be improved by weighting the quantization according to the Contrast Sensitivity Function (CSF). The visual artifact at low bit rate is minimized. To evaluate our method, we use the Peak Signal to Noise Ratio (PSNR) and a new evaluating criteria witch takes into account visual criteria. The experimental results illustrate that our technique shows improvement on image quality at the same compression ratio.

An Interactive e-Learning Management System (e-LMS): A Solution to Tanzanian Secondary Schools' Education

Information and Communications Technologies (ICT) has been integrated in education in many developing and developed countries alike, but the use of ICT in Tanzanian schools is dismal. Many Tanzanian secondary schools have no computers. The few schools with computers use them primarily for secretarial services and computer literacy training. The Tanzanian education system at other levels like secondary school level has to undergo substantial transformation, underscored by the growing application of new information and communication technology. This paper presents the e-readiness survey result from secondary schools in Tanzania. The paper also suggests how Tanzania can make use of the few present ICT resources to support and improve teaching and learning functions to improve performance and acquisition of knowledge by using e-Learning Management System (e-LMS).

Semi Classical Three-Valley Monte Carlo Simulation Analysis of Steady-State and Transient Electron Transport within Bulk Ga0.38In0.62P

to simulate the phenomenon of electronic transport in semiconductors, we try to adapt a numerical method, often and most frequently it’s that of Monte Carlo. In our work, we applied this method in the case of a ternary alloy semiconductor GaInP in its cubic form; The Calculations are made using a non-parabolic effective-mass energy band model. We consider a band of conduction to three valleys (ΓLX), major of the scattering mechanisms are taken into account in this modeling, as the interactions with the acoustic phonons (elastic collisions) and optics (inelastic collisions). The polar optical phonons cause anisotropic collisions, intra-valleys, very probable in the III-V semiconductors. Other optical phonons, no polar, allow transitions inter-valleys. Initially, we present the full results obtained by the simulation of Monte Carlo in GaInP in stationary regime. We consider thereafter the effects related to the application of an electric field varying according to time, we thus study the transient phenomenon which make their appearance in ternary material

Online Control of Knitted Fabric Quality: Loop Length Control

Circular knitting machine makes the fabric with more than two knitting tools. Variation of yarn tension between different knitting tools causes different loop length of stitches duration knitting process. In this research, a new intelligent method is applied to control loop length of stitches in various tools based on ideal shape of stitches and real angle of stitches direction while different loop length of stitches causes stitches deformation and deviation those of angle. To measure deviation of stitch direction against variation of tensions, image processing technique was applied to pictures of different fabrics with constant front light. After that, the rate of deformation is translated to needed compensation of loop length cam degree to cure stitches deformation. A fuzzy control algorithm was applied to loop length modification in knitting tools. The presented method was experienced for different knitted fabrics of various structures and yarns. The results show that presented method is useable for control of loop length variation between different knitting tools based on stitch deformation for various knitted fabrics with different fabric structures, densities and yarn types.

Critical Assessment of Scoring Schemes for Protein-Protein Docking Predictions

Protein-protein interactions (PPI) play a crucial role in many biological processes such as cell signalling, transcription, translation, replication, signal transduction, and drug targeting, etc. Structural information about protein-protein interaction is essential for understanding the molecular mechanisms of these processes. Structures of protein-protein complexes are still difficult to obtain by biophysical methods such as NMR and X-ray crystallography, and therefore protein-protein docking computation is considered an important approach for understanding protein-protein interactions. However, reliable prediction of the protein-protein complexes is still under way. In the past decades, several grid-based docking algorithms based on the Katchalski-Katzir scoring scheme were developed, e.g., FTDock, ZDOCK, HADDOCK, RosettaDock, HEX, etc. However, the success rate of protein-protein docking prediction is still far from ideal. In this work, we first propose a more practical measure for evaluating the success of protein-protein docking predictions,the rate of first success (RFS), which is similar to the concept of mean first passage time (MFPT). Accordingly, we have assessed the ZDOCK bound and unbound benchmarks 2.0 and 3.0. We also createda new benchmark set for protein-protein docking predictions, in which the complexes have experimentally determined binding affinity data. We performed free energy calculation based on the solution of non-linear Poisson-Boltzmann equation (nlPBE) to improve the binding mode prediction. We used the well-studied thebarnase-barstarsystem to validate the parameters for free energy calculations. Besides,thenlPBE-based free energy calculations were conducted for the badly predicted cases by ZDOCK and ZRANK. We found that direct molecular mechanics energetics cannot be used to discriminate the native binding pose from the decoys.Our results indicate that nlPBE-based calculations appeared to be one of the promising approaches for improving the success rate of binding pose predictions.

Optimal Calculation of Partial Transmission Ratios of Four-Step Helical Gearboxes for Getting Minimal Gearbox Length

This paper presents a new study on the applications of optimization and regression analysis techniques for optimal calculation of partial ratios of four-step helical gearboxes for getting minimal gearbox length. In the paper, basing on the moment equilibrium condition of a mechanic system including four gear units and their regular resistance condition, models for determination of the partial ratios of the gearboxes are proposed. In particular, explicit models for calculation of the partial ratios are proposed by using regression analysis. Using these models, the determination of the partial ratios is accurate and simple.

Numerical Analysis of Rapid Gas Decompression in Pure Nitrogen using 1D and 3D Transient Mathematical Models of Gas Flow in Pipes

The paper presents a numerical investigation on the rapid gas decompression in pure nitrogen which is made by using the one-dimensional (1D) and three-dimensional (3D) mathematical models of transient compressible non-isothermal fluid flow in pipes. A 1D transient mathematical model of compressible thermal multicomponent fluid mixture flow in pipes is presented. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multicomponent gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. This model is successfully validated on the experimental data [1] and shows a good agreement with measurements. A 3D transient mathematical model of compressible thermal single-component gas flow in pipes, which is built by using the CFD Fluent code (ANSYS), is presented in the paper. The set of unsteady Reynolds-averaged conservation equations for gas phase is solved. Thermo-physical properties of single-component gas are calculated by solving the Real Gas Equation of State (EOS) model. The simplest case of gas decompression in pure nitrogen is simulated using both 1D and 3D models. The ability of both models to simulate the process of rapid decompression with a high order of agreement with each other is tested. Both, 1D and 3D numerical results show a good agreement between each other. The numerical investigation shows that 3D CFD model is very helpful in order to validate 1D simulation results if the experimental data is absent or limited.

A Generator from Cascade Markov Model for Packet Loss and Subsequent Bit Error Description

In this paper we present a novel error model for packet loss and subsequent error description. The proposed model simulates the error performance of wireless communication link. The model is designed as two independent Markov chains, where the first one is used for packet generation and the second one generates correctly and incorrectly transmitted bits for received packets from the first chain. The statistical analyses of real communication on the wireless link are used for determination of model-s parameters. Using the obtained parameters and the implementation of the generator, we collected generated traffic. The obtained results generated by proposed model are compared with the real data collection.

Examining the Pearlite Growth Interface in a Fe-C-Mn Alloy

A method of collecting composition data and examining structural features of pearlite lamellae and the parent austenite at the growth interface in a 13wt. % manganese steel has been demonstrated with the use of Scanning Transmission Electron Microscopy (STEM). The combination of composition data and the structural features observed at the growth interface show that available theories of pearlite growth cannot explain all the observations.

An Image Encryption Method with Magnitude and Phase Manipulation using Carrier Images

We describe an effective method for image encryption which employs magnitude and phase manipulation using carrier images. Although it involves traditional methods like magnitude and phase encryptions, the novelty of this work lies in deploying the concept of carrier images for encryption purpose. To this end, a carrier image is randomly chosen from a set of stored images. One dimensional (1-D) discrete Fourier transform (DFT) is then carried out on the original image to be encrypted along with the carrier image. Row wise spectral addition and scaling is performed between the magnitude spectra of the original and carrier images by randomly selecting the rows. Similarly, row wise phase addition and scaling is performed between the original and carrier images phase spectra by randomly selecting the rows. The encrypted image obtained by these two operations is further subjected to one more level of magnitude and phase manipulation using another randomly chosen carrier image by 1-D DFT along the columns. The resulting encrypted image is found to be fully distorted, resulting in increasing the robustness of the proposed work. Further, applying the reverse process at the receiver, the decrypted image is found to be distortionless.

Effect of Transglutaminase Cross Linking on the Functional Properties as a Function of NaCl Concentration of Legumes Protein Isolate

The effect of cross linking of the protein isolates of three legumes with the microbial enzyme transglutaminase (EC 2.3.2.13) on the functional properties at different NaCl concentration was studied. The reduction in the total free amino groups (OD340) of the polymerized protein showed that TGase treatment cross-linking the protein subunit of each legume. The solubility of the protein polymer of each legume was greatly improved at high concentration of NaCl. At 1.2 M NaCl the solubility of the native legumes protein was significantly decreased but after polymerization slightly improved. Cross linked proteins were less turbid on heating to higher temperature as compared to native proteins and the temperature at which the protein turns turbid also increased in the polymerized proteins. The emulsifying and foaming properties of the protein polymer were greatly improved at all concentrations of NaCl for all legumes.

Enzymatic Esterification of Carboxylic Acids and Higher Alcohols in Organic Medium

The studying of enzymatic esterification of carboxylic acids and higher alcohols was performed by esterase Saccharomyces cerevisiae in water-organic medium. Investigation of the enzyme specificity to acetic substrates showed the best result with acetic acid in esterification reactions with ethanol whereas within other carboxylic acids the esterification decreased with acids: hexanoic > pentanoic > butyric > decanoic. In relation to higher alcohols C3-C5, esterification increased with alcohols propanol < butanol < amylol. Also it was determined that esterase was more specific to alcohols with branched chain such as isobutyl alcohol and isoamyl alcohol. Data obtained may have important practical implications, for example, for application of yeast esterase in producing various volatile esters as well as in enzymatic transformation of volatile acids and toxic fusel alcohols into volatile esters by providing the production of the high quality alcoholic beverages with redused content of higher alcohols as well as with improved degustational and hygienic properties.

A New Nonlinear Excitation Controller for Transient Stability Enhancement in Power Systems

The very nonlinear nature of the generator and system behaviour following a severe disturbance precludes the use of classical linear control technique. In this paper, a new approach of nonlinear control is proposed for transient and steady state stability analysis of a synchronous generator. The control law of the generator excitation is derived from the basis of Lyapunov stability criterion. The overall stability of the system is shown using Lyapunov technique. The application of the proposed controller to simulated generator excitation control under a large sudden fault and wide range of operating conditions demonstrates that the new control strategy is superior to conventional automatic voltage regulator (AVR), and show very promising results.

Deduction of Fuzzy Autocatalytic Set to Omega Algebra and Transformation Semigroup

In this paper, the Fuzzy Autocatalytic Set (FACS) is composed into Omega Algebra by embedding the membership value of fuzzy edge connectivity using the property of transitive affinity. Then, the Omega Algebra of FACS is a transformation semigroup which is a special class of semigroup is shown.

Three-Phase High Frequency AC Conversion Circuit with Dual Mode PWM/PDM Control Strategy for High Power IH Applications

This paper presents a novel three-phase utility frequency to high frequency soft switching power conversion circuit with dual mode pulse width modulation and pulse density modulation for high power induction heating applications as melting of steel and non ferrous metals, annealing of metals, surface hardening of steel and cast iron work pieces and hot water producers, steamers and super heated steamers. This high frequency power conversion circuit can operate from three-phase systems to produce high current for high power induction heating applications under the principles of ZVS and it can regulate its ac output power from the rated value to a low power level. A dual mode modulation control scheme based on high frequency PWM in synchronization with the utility frequency positive and negative half cycles for the proposed high frequency conversion circuit and utility frequency pulse density modulation is produced to extend its soft switching operating range for wide ac output power regulation. A dual packs heat exchanger assembly is designed to be used in consumer and industrial fluid pipeline systems and it is proved to be suitable for the hot water, steam and super heated steam producers. Experiment and simulation results are given in this paper to verify the operation principles of the proposed ac conversion circuit and to evaluate its power regulation and conversion efficiency. Also, the paper presents a mutual coupling model of the induction heating load instead of equivalent transformer circuit model.

Neutronic Study of Two Reactor Cores Cooled with Light and Heavy Water Using Computation Method

Most HWRs currently use natural uranium fuel. Using enriched uranium fuel results in a significant improvement in fuel cycle costs and uranium utilization. On the other hand, reactivity changes of HWRs over the full range of operating conditions from cold shutdown to full power are small. This reduces the required reactivity worth of control devices and minimizes local flux distribution perturbations, minimizing potential problems due to transient local overheating of fuel. Analyzing heavy water effectiveness on neutronic parameters such as enrichment requirements, peaking factor and reactivity is important and should pay attention as primary concepts of a HWR core designing. Two nuclear nuclear reactors of CANDU-type and hexagonal-type reactor cores of 33 fuel assemblies and 19 assemblies in 1.04 P/D have been respectively simulated using MCNP-4C code. Using heavy water and light water as moderator have been compared for achieving less reactivity insertion and enrichment requirements. Two fuel matrixes of (232Th/235U)O2 and (238/235U)O2 have been compared to achieve more economical and safe design. Heavy water not only decreased enrichment needs, but it concluded in negative reactivity insertions during moderator density variations. Thorium oxide fuel assemblies of 2.3% enrichment loaded into the core of heavy water moderator resulted in 0.751 fission to absorption ratio and peaking factor of 1.7 using. Heavy water not only provides negative reactivity insertion during temperature raises which changes moderator density but concluded in 2 to 10 kg reduction of enrichment requirements, depend on geometry type.

External Effects on Dynamic Competitive Model of Domestic Airline and High Speed Rail

Social-economic variables influence transportation demand largely. Analyses of discrete choice model consider social-economic variables to study traveler-s mode choice and demand. However, to calibrate the discrete choice model needs to have plenty of questionnaire survey. Also, an aggregative model is proposed. The historical data of passenger volumes for high speed rail and domestic civil aviation are employed to calibrate and validate the model. In this study, models with different social-economic variables, which are oil price, GDP per capita, CPI and economic growth rate, are compared. From the results, the model with the oil price is better than models with the other social-economic variables.

Optimal Estimation of Supporting-Ground Orientation for Multi-Segment Body Based on Otolith-Canal Fusion

This article discusses the problem of estimating the orientation of inclined ground on which a human subject stands based on information provided by the vestibular system consisting of the otolith and semicircular canals. It is assumed that body segments are not necessarily aligned and thus forming an open kinematic chain. The semicircular canals analogues to a technical gyrometer provide a measure of the angular velocity whereas the otolith analogues to a technical accelerometer provide a measure of the translational acceleration. Two solutions are proposed and discussed. The first is based on a stand-alone Kalman filter that optimally fuses the two measurements based on their dynamic characteristics and their noise properties. In this case, no body dynamic model is needed. In the second solution, a central extended disturbance observer that incorporates a body dynamic model (internal model) is employed. The merits of both solutions are discussed and demonstrated by experimental and simulation results.

Data Embedding Based on Better Use of Bits in Image Pixels

In this study, a novel approach of image embedding is introduced. The proposed method consists of three main steps. First, the edge of the image is detected using Sobel mask filters. Second, the least significant bit LSB of each pixel is used. Finally, a gray level connectivity is applied using a fuzzy approach and the ASCII code is used for information hiding. The prior bit of the LSB represents the edged image after gray level connectivity, and the remaining six bits represent the original image with very little difference in contrast. The proposed method embeds three images in one image and includes, as a special case of data embedding, information hiding, identifying and authenticating text embedded within the digital images. Image embedding method is considered to be one of the good compression methods, in terms of reserving memory space. Moreover, information hiding within digital image can be used for security information transfer. The creation and extraction of three embedded images, and hiding text information is discussed and illustrated, in the following sections.

State Economic Safety in the Conditions of Innovative Economy Formation

Innovations and innovative activity get the increasing value for successful financial and economic activity of the countries and regions. The level of innovative sphere development determines place of a country or a region in world economy and forms a basis of steady economic growth. This article is devoted to different aspects of organization of the national economic safety in the conditions of innovative development, its problems, risks and threats. Economy can be considered as aspiring for transition to innovative way only with finding of economic safety: financial independence, power stability and technological progress. There are statistical indicators, defining the level of economic security and factors, threatening economic safety of the state. The research is based on the analysis of factors and indicators in conditions of innovative development. The paper is illustrated by the examples of possible estimated system of the economic safety level.