Thermodynamic Optimization of Turboshaft Engine using Multi-Objective Genetic Algorithm

In this paper multi-objective genetic algorithms are employed for Pareto approach optimization of ideal Turboshaft engines. In the multi-objective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are specific thrust (F/m& 0), specific fuel consumption ( P S ), output shaft power 0 (& /&) shaft W m and overall efficiency( ) O η . These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters (compressor pressure ratio, turbine temperature ratio and Mach number). At the first stage single objective optimization has been investigated and the method of NSGA-II has been used for multiobjective optimization. Optimization procedures are performed for two and four objective functions and the results are compared for ideal Turboshaft engine. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of four objective optimization the results are given in tables.

Shape Error Concealment for Shape Independent Transform Coding

Arbitrarily shaped video objects are an important concept in modern video coding methods. The techniques presently used are not based on image elements but rather video objects having an arbitrary shape. In this paper, spatial shape error concealment techniques to be used for object-based image in error-prone environments are proposed. We consider a geometric shape representation consisting of the object boundary, which can be extracted from the α-plane. Three different approaches are used to replace a missing boundary segment: Bézier interpolation, Bézier approximation and NURBS approximation. Experimental results on object shape with different concealment difficulty demonstrate the performance of the proposed methods. Comparisons with proposed methods are also presented.

Deoiling Hydrocyclones Flow Field-A Comparison between k-Epsilon and LES

In this research a comparison between k-epsilon and LES model for a deoiling hydrocyclone is conducted. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Potential of prediction for both methods of this complex swirl flow is discussed. Large eddy simulation method results have more similarity to experiment and its results are presented in figures from different hydrocyclone cross sections.

Requirements and Design of RFID based EManufacturing System

This paper proposes the requirements and design of RFID based system for SFC (Shop Floor Control) in order to achieve the factory real time controllability, Allowing to develop EManufacturing System. The detailed logical specifications of the core functions and the design diagrams of RFID based system are developed. Then RFID deployment in E-Manufacturing systems is investigated..

Effective Implementation of Burst SegmentationTechniques in OBS Networks

Optical Bursts Switching (OBS) is a relatively new optical switching paradigm. Contention and burst loss in OBS networks are major concerns. To resolve contentions, an interesting alternative to discarding the entire data burst is to partially drop the burst. Partial burst dropping is based on burst segmentation concept that its implementation is constrained by some technical challenges, besides the complexity added to the algorithms and protocols on both edge and core nodes. In this paper, the burst segmentation concept is investigated, and an implementation scheme is proposed and evaluated. An appropriate dropping policy that effectively manages the size of the segmented data bursts is presented. The dropping policy is further supported by a new control packet format that provides constant transmission overhead.

The Effects of Immersion on Visual Attention and Detection of Signals Performance for Virtual Reality Training Systems

The Virtual Reality (VR) is becoming increasingly important for business, education, and entertainment, therefore VR technology have been applied for training purposes in the areas of military, safety training and flying simulators. In particular, the superior and high reliability VR training system is very important in immersion. Manipulation training in immersive virtual environments is difficult partly because users must do without the hap contact with real objects they rely on in the real world to orient themselves and their manipulated. In this paper, we create a convincing questionnaire of immersion and an experiment to assess the influence of immersion on performance in VR training system. The Immersion Questionnaire (IQ) included spatial immersion, Psychological immersion, and Sensory immersion. We show that users with a training system complete visual attention and detection of signals. Twenty subjects were allocated to a factorial design consisting of two different VR systems (Desktop VR and Projector VR). The results indicated that different VR representation methods significantly affected the participants- Immersion dimensions.

Paremaeter Determination of a Vehicle 5-DOF Model to Simulate Occupant Deceleration in a Frontal Crash

This study has investigated a vehicle Lumped Parameter Model (LPM) in frontal crash. There are several ways for determining spring and damper characteristics and type of problem shall be considered as system identification. This study use Genetic Algorithm (GA) procedure, being an effective procedure in case of optimization issues, for optimizing errors, between target data (experimental data) and calculated results (being obtained by analytical solving). In this study analyzed model in 5-DOF then compared our results with 5-DOF serial model. Finally, the response of model due to external excitement is investigated.

Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans

Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.

Evaluating the Response of Rainfed-Chickpea to Population Density in Iran, Using Simulation

The response of growth and yield of rainfed-chickpea to population density should be evaluated based on long-term experiments to include the climate variability. This is achievable just by simulation. In this simulation study, this evaluation was done by running the CYRUS model for long-term daily weather data of five locations in Iran. The tested population densities were 7 to 59 (with interval of 2) stands per square meter. Various functions, including quadratic, segmented, beta, broken linear, and dent-like functions, were tested. Considering root mean square of deviations and linear regression statistics [intercept (a), slope (b), and correlation coefficient (r)] for predicted versus observed variables, the quadratic and broken linear functions appeared to be appropriate for describing the changes in biomass and grain yield, and in harvest index, respectively. Results indicated that in all locations, grain yield tends to show increasing trend with crowding the population, but subsequently decreases. This was also true for biomass in five locations. The harvest index appeared to have plateau state across low population densities, but decreasing trend with more increasing density. The turning point (optimum population density) for grain yield was 30.68 stands per square meter in Isfahan, 30.54 in Shiraz, 31.47 in Kermanshah, 34.85 in Tabriz, and 32.00 in Mashhad. The optimum population density for biomass ranged from 24.6 (in Tabriz) to 35.3 stands per square meter (Mashhad). For harvest index it varied between 35.87 and 40.12 stands per square meter.

Preliminary Evaluation of Feasibility for Wind Energy Production on Offshore Extraction Platforms

A preliminary evaluation of the feasibility of installing small wind turbines on offshore oil and gas extraction platforms is presented. Some aerodynamic considerations are developed in order to determine the best rotor architecture to exploit the wind potential on such installations, assuming that wind conditions over the platforms are similar to those registered on the roofs of urban buildings. Economical considerations about both advantages and disadvantages of the exploitation of wind energy on offshore extraction platforms with respect to conventional offshore wind plants, is also presented. Finally, wind charts of European offshore winds are presented together with a map of the major offshore installations.

Optimization of Heat Treatment Due to Austenising Temperature, Time and Quenching Solution in Hadfield Steels

Manganese steel (Hadfield) is one of the important alloys in industry due to its special properties. High work hardening ability with appropriate toughness and ductility are the properties that caused this alloy to be used in wear resistance parts and in high strength condition. Heat treatment is the main process through which the desired mechanical properties and microstructures are obtained in Hadfield steel. In this study various heat treatment cycles, differing in austenising temperature, time and quenching solution are applied. For this purpose, the same samples of manganese steel was heat treated in 9 different cycles, and then the mechanical properties and microstructures were investigated. Based on the results of the study, the optimum heat treatment cycle was obtained.

Access Control System: Monitoring Tool for Fiber to the Home Passive Optical Network

An optical fault monitoring in FTTH-PON using ACS is demonstrated. This device can achieve real-time fault monitoring for protection feeder fiber. In addition, the ACS can distinguish optical fiber fault from the transmission services to other customers in the FTTH-PON. It is essential to use a wavelength different from the triple-play services operating wavelengths for failure detection. ACS is using the operating wavelength 1625 nm for monitoring and failure detection control. Our solution works on a standard local area network (LAN) using a specially designed hardware interfaced with a microcontroller integrated Ethernet.

Smart Motion

Austenite and Martensite indicate the phases of solids undergoing phase transformation which we usually associate with materials and not with living organisms. This article provides an overview of bacterial proteins and structures that are undergoing phase transformation and suggests its probable effect on mechanical behavior. The context is mainly within the role of phase transformations occurring in the flagellum of bacteria. The current knowledge of molecular mechanism leading to phase variation in living organisms is reviewed. Since in bacteria, each flagellum is driven by a separate motor, similarity to a Differential drive in case of four-wheeled vehicles is suggested. It also suggests the application of the mechanism in which bacteria changes its direction of movement to facilitate single point turning of a multi-wheeled vehicle. Finally, examples are presented to illustrate that the motion due to phase transformation of flagella in bacteria can start a whole new research on motion mechanisms.

Optimal Digital Pitch Aircraft Control

In this paper a controller for the pitch angle of an aircraft regarding to the elevator deflection angle is designed. The way how the elevator angle affects pitching motion of the aircraft is pointed out, as well as, how a pitch controller can be applied for the aircraft to reach certain pitch angle. In this digital optimal system, the elevator deflection angle and pitching angle of the plane are considered to be input and output respectively. A single input single output (SISO) system is presented. A digital pitch aircraft control is demonstrated. A simulation for the whole system has been performed. The optimal control weighting vectors, Q and R have been determined.

Software Engineering Interoperable Environment for University Process Workflow and Document Management

The objective of the research was focused on the design, development and evaluation of a sustainable web based network system to be used as an interoperable environment for University process workflow and document management. In this manner the most of the process workflows in Universities can be entirely realized electronically and promote integrated University. Definition of the most used University process workflows enabled creating electronic workflows and their execution on standard workflow execution engines. Definition or reengineering of workflows provided increased work efficiency and helped in having standardized process through different faculties. The concept and the process definition as well as the solution applied as Case study are evaluated and findings are reported.

Improved Approximation to the Derivative of a Digital Signal Using Wavelet Transforms for Crosstalk Analysis

The information revealed by derivatives can help to better characterize digital near-end crosstalk signatures with the ultimate goal of identifying the specific aggressor signal. Unfortunately, derivatives tend to be very sensitive to even low levels of noise. In this work we approximated the derivatives of both quiet and noisy digital signals using a wavelet-based technique. The results are presented for Gaussian digital edges, IBIS Model digital edges, and digital edges in oscilloscope data captured from an actual printed circuit board. Tradeoffs between accuracy and noise immunity are presented. The results show that the wavelet technique can produce first derivative approximations that are accurate to within 5% or better, even under noisy conditions. The wavelet technique can be used to calculate the derivative of a digital signal edge when conventional methods fail.

Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine

The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.

More on Gaussian Quadratures for Fuzzy Functions

In this paper, the Gaussian type quadrature rules for fuzzy functions are discussed. The errors representation and convergence theorems are given. Moreover, four kinds of Gaussian type quadrature rules with error terms for approximate of fuzzy integrals are presented. The present paper complements the theoretical results of the paper by T. Allahviranloo and M. Otadi [T. Allahviranloo, M. Otadi, Gaussian quadratures for approximate of fuzzy integrals, Applied Mathematics and Computation 170 (2005) 874-885]. The obtained results are illustrated by solving some numerical examples.

Evaluation and Analysis of Lean-Based Manufacturing Equipment and Technology System for Jordanian Industries

International markets driven forces are changing continuously, therefore companies need to gain a competitive edge in such markets. Improving the company's products, processes and practices is no longer auxiliary. Lean production is a production management philosophy that consolidates work tasks with minimum waste resulting in improved productivity. Lean production practices can be mapped into many production areas. One of these is Manufacturing Equipment and Technology (MET). Many lean production practices can be implemented in MET, namely, specific equipment configurations, total preventive maintenance, visual control, new equipment/ technologies, production process reengineering and shared vision of perfection.The purpose of this paper is to investigate the implementation level of these six practices in Jordanian industries. To achieve that a questionnaire survey has been designed according to five-point Likert scale. The questionnaire is validated through pilot study and through experts review. A sample of 350 Jordanian companies were surveyed, the response rate was 83%. The respondents were asked to rate the extent of implementation for each of practices. A relationship conceptual model is developed, hypotheses are proposed, and consequently the essential statistical analyses are then performed. An assessment tool that enables management to monitor the progress and the effectiveness of lean practices implementation is designed and presented. Consequently, the results show that the average implementation level of lean practices in MET is 77%, Jordanian companies are implementing successfully the considered lean production practices, and the presented model has Cronbach-s alpha value of 0.87 which is good evidence on model consistency and results validation.

To Design Holistic Health Service Systems on the Internet

There are different kinds of online systems on the Internet for people who need support and develop new knowledge. Online communities and Ask the Expert systems are two such systems. In the health care area, the number of users of these systems has increased at a rapid pace. Interactions with medical trained experts take place online, and people with concerns about similar health problems come together to share experiences and advice. The systems are also used as storages and browsed for health information. Over the years, studies have been conducted of the usage of the different systems. However, in what ways the systems can be used together to enhance learning has not been explored. This paper presents results from a study of online health-communities and an Ask the Expert system for people who suffer from overweight. Differences and similarities in regards to posted issues and replies are discussed, and suggestions for a new holistic design of the two systems are presented.