Privacy Threats in RFID Group Proof Schemes

RFID tag is a small and inexpensive microchip which is capable of transmitting unique identifier through wireless network in a short distance. If a group of RFID tags can be scanned simultaneously by one reader, RFID Group proof could be generated. Group proof can be used in various applications, such as good management which is usually achieved using barcode system. A lot of RFID group proof schemes have been proposed by many researchers. In this paper, we introduce some existing group proof schemes and then analyze their vulnerabilities to the privacy. Moreover, we propose a new attack model, which threats the privacy of user by tracking tags in a group.

Project Management and Software Development Processes: Integrating PMBOK and OPEN

Software organizations are constantly looking for better solutions when designing and using well-defined software processes for the development of their products and services. However, while the technical aspects are virtually easier to arrange, many software development processes lack more support on project management issues. When adopting such processes, an organization needs to apply good project management skills along with technical views provided by those models. This research proposes the definition of a new model that integrates the concepts of PMBOK and those available on the OPEN metamodel, helping not only process integration but also building the steps towards a more comprehensive and automatable model.

A Probability based Pair Extension Method in Protein 2-DE Gel Image Analysis

The two-dimensional gel electrophoresis method (2-DE) is widely used in Proteomics to separate thousands of proteins in a sample. By comparing the protein expression levels of proteins in a normal sample with those in a diseased one, it is possible to identify a meaningful set of marker proteins for the targeted disease. The major shortcomings of this approach involve inherent noises and irregular geometric distortions of spots observed in 2-DE images. Various experimental conditions can be the major causes of these problems. In the protein analysis of samples, these problems eventually lead to incorrect conclusions. In order to minimize the influence of these problems, this paper proposes a partition based pair extension method that performs spot-matching on a set of gel images multiple times and segregates more reliable mapping results which can improve the accuracy of gel image analysis. The improved accuracy of the proposed method is analyzed through various experiments on real 2-DE images of human liver tissues.

A Semi-Fragile Signature based Scheme for Ownership Identification and Color Image Authentication

In this paper, a novel scheme is proposed for ownership identification and authentication using color images by deploying Cryptography and Digital Watermarking as underlaying technologies. The former is used to compute the contents based hash and the latter to embed the watermark. The host image that will claim to be the rightful owner is first transformed from RGB to YST color space exclusively designed for watermarking based applications. Geometrically YS ÔèÑ T and T channel corresponds to the chrominance component of color image, therefore suitable for embedding the watermark. The T channel is divided into 4×4 nonoverlapping blocks. The size of block is important for enhanced localization, security and low computation. Each block along with ownership information is then deployed by SHA160, a one way hash function to compute the content based hash, which is always unique and resistant against birthday attack instead of using MD5 that may raise the condition i.e. H(m)=H(m'). The watermark payload varies from block to block and computed by the variance factorα . The quality of watermarked images is quite high both subjectively and objectively. Our scheme is blind, computationally fast and exactly locates the tampered region.

Harris Extraction and SIFT Matching for Correlation of Two Tablets

This article presents the developments of efficient algorithms for tablet copies comparison. Image recognition has specialized use in digital systems such as medical imaging, computer vision, defense, communication etc. Comparison between two images that look indistinguishable is a formidable task. Two images taken from different sources might look identical but due to different digitizing properties they are not. Whereas small variation in image information such as cropping, rotation, and slight photometric alteration are unsuitable for based matching techniques. In this paper we introduce different matching algorithms designed to facilitate, for art centers, identifying real painting images from fake ones. Different vision algorithms for local image features are implemented using MATLAB. In this framework a Table Comparison Computer Tool “TCCT" is designed to facilitate our research. The TCCT is a Graphical Unit Interface (GUI) tool used to identify images by its shapes and objects. Parameter of vision system is fully accessible to user through this graphical unit interface. And then for matching, it applies different description technique that can identify exact figures of objects.

Data Mining on the Router Logs for Statistical Application Classification

With the advance of information technology in the new era the applications of Internet to access data resources has steadily increased and huge amount of data have become accessible in various forms. Obviously, the network providers and agencies, look after to prevent electronic attacks that may be harmful or may be related to terrorist applications. Thus, these have facilitated the authorities to under take a variety of methods to protect the special regions from harmful data. One of the most important approaches is to use firewall in the network facilities. The main objectives of firewalls are to stop the transfer of suspicious packets in several ways. However because of its blind packet stopping, high process power requirements and expensive prices some of the providers are reluctant to use the firewall. In this paper we proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. By discriminating these data, an administrator may take an approach action against the user. This method is very fast and can be used simply in adjacent with the Internet routers.

Mathematical Model for the Transmission of Leptospirosis in Juvennile and Adults Humans

Leptospirosis occurs worldwide (except the poles of the earth), urban and rural areas, developed and developing countries, especially in Thailand. It can be transmitted to the human by rats through direct and indirect ways. Human can be infected by either touching the infected rats or contacting with water, soil containing urine from the infected rats through skin, eyes and nose. The data of the people who are infected with this disease indicates that most of the patients are adults. The transmission of this disease is studied through mathematical model. The population is separated into human and rat. The human is divided into two classes, namely juvenile and adult. The model equation is constructed for each class. The standard dynamical modeling method is then used for analyzing the behaviours of solutions. In addition, the conditions of the parameters for the disease free and endemic states are obtained. Numerical solutions are shown to support the theoretical predictions. The results of this study guide the way to decrease the disease outbreak.

Stress, Perceived Social Support, Coping Capability and Depression: A Study of Local and Foreign Students in the Malaysian Context

The aim of this study is to investigate the effect of perceived social support and stress on the coping capability and level of depression of foreign and local students in Malaysia. Using convenience sampling, 200 students from three universities in Selangor, Malaysia participated in the study. The results of this study revealed that there was a significant relationship between perceived social support and coping capability. It is also found that there is a negative relationship between coping capability and depression. Further, stress and depression are positively related whereas stress and coping capability are negatively related. Lastly, there is no significant difference for the stress level and coping capability amongst local and foreign students.

Tolerance of Heavy Metals by Gram Positive Soil Bacteria

With the intention of screening for heavy metal tolerance, a number of bacteria were isolated and characterized from a pristine soil. Two Gram positive isolates were identified as Paenibacillus sp. and Bacillus thuringeinsis. Tolerance of Cd2+, Cu2+ and Zn2+ by these bacteria was studied and found that both bacteria were highly sensitive to Cu2+ compared to other two metals. Both bacteria showed the same pattern of metal tolerance in the order Zn+ > Cd2+ > Cu2+. When the metal tolerance in both bacteria was compared, Paenibacillus sp. showed the highest sensitivity to Cu2+ where as B. thuringiensis showed highest sensitivity to Cd2+ and Zn2+ .These findings revealed the potential of Paenibacillus sp. in developing a biosensor to detect Cu2+ in environmental samples.

Novel Hybrid Method for Gene Selection and Cancer Prediction

Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.

Mapping Complex, Large – Scale Spiking Networks on Neural VLSI

Traditionally, VLSI implementations of spiking neural nets have featured large neuron counts for fixed computations or small exploratory, configurable nets. This paper presents the system architecture of a large configurable neural net system employing a dedicated mapping algorithm for projecting the targeted biology-analog nets and dynamics onto the hardware with its attendant constraints.

Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System

The paper presents an investigation in to the effect of neural network predictive control of UPFC on the transient stability performance of a multimachine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers, and an improved damping of the power oscillations as compared to the conventional PI controller.

An Empirical Model to Calculate the Threads Stripping of a Bolt Installed in a Tapped Part

To determine the length of engagement threads of a bolt installed in a tapped part in order to avoid the threads stripping remains a very current problem in the design of the thread assemblies. It does not exist a calculation method formalized for the cases where the bolt is screwed directly in a ductile material. In this article, we study the behavior of the threads stripping of a loaded assembly by using a modelling by finite elements and a rupture criterion by damage. This modelling enables us to study the different parameters likely to influence the behavior of this bolted connection. We study in particular, the influence of couple of materials constituting the connection, of the bolt-s diameter and the geometrical characteristics of the tapped part, like the external diameter and the length of engagement threads. We established an experiments design to know the most significant parameters. That enables us to propose a simple expression making possible to calculate the resistance of the threads whatever the metallic materials of the bolt and the tapped part. We carried out stripping tests in order to validate our model. The estimated results are very close to those obtained by the tests.

A Hybrid Approach for Selection of Relevant Features for Microarray Datasets

Developing an accurate classifier for high dimensional microarray datasets is a challenging task due to availability of small sample size. Therefore, it is important to determine a set of relevant genes that classify the data well. Traditionally, gene selection method often selects the top ranked genes according to their discriminatory power. Often these genes are correlated with each other resulting in redundancy. In this paper, we have proposed a hybrid method using feature ranking and wrapper method (Genetic Algorithm with multiclass SVM) to identify a set of relevant genes that classify the data more accurately. A new fitness function for genetic algorithm is defined that focuses on selecting the smallest set of genes that provides maximum accuracy. Experiments have been carried on four well-known datasets1. The proposed method provides better results in comparison to the results found in the literature in terms of both classification accuracy and number of genes selected.

X-ray Pulse Profiles of PSR J0538+2817

This paper reports our analysis of 163 ks observations of PSR J0538+2817 with the Rossi X-Ray Timing Explorer (RXTE).The pulse profiles, detected up to 60 keV, show a single peak asin the case for radio frequency. The profile is well described by one Gaussians function with full width at half maximum (FWHM) 0.04794. We compared the difference of arrival time between radio and X-ray pulse profiles for the first time. It turns out that the phase of radio emits precede the X-ray by 8.7 ± 4.5 ms. Furthermore we obtained the pulse profiles in the energy ranges of 2.29-6.18 keV, 6.18-12.63 keV and 12.63-17.36 keV. The intensity of pulses decreases with the increasing energy range. We discuss the emission geometry in our work.

An Immunosensor for Bladder Cancer Screening

Nuclear matrix protein 22 (NMP22) is a FDA approved biomarker for bladder cancer. The objective of this study is to develop a simple NMP22 immumosensor (NMP22-IMS) for accurate measurement of NMP22. The NMP22-IMS was constructed with NMP22 antibody immobilized on screen-printed carbon electrodes. The construction procedures and antibody immobilization are simple. Results showed that the NMP22-IMS has an excellent (r2³0.95) response range (20 – 100 ng/mL). In conclusion, a simple and reliable NMP22-IMS was developed, capable of precisely determining urine NMP22 level.

New Product Development Process on High-Tech Innovation Life Cycle

This work will provide a new perspective of exploring innovation thematic. It will reveal that radical and incremental innovations are complementary during the innovation life cycle and accomplished through distinct ways of developing new products. Each new product development process will be constructed according to the nature of each innovation and the state of the product development. This paper proposes the inclusion of the organizational function areas that influence new product's development on the new product development process.

Intelligent Audio Watermarking using Genetic Algorithm in DWT Domain

In this paper, an innovative watermarking scheme for audio signal based on genetic algorithms (GA) in the discrete wavelet transforms is proposed. It is robust against watermarking attacks, which are commonly employed in literature. In addition, the watermarked image quality is also considered. We employ GA for the optimal localization and intensity of watermark. The watermark detection process can be performed without using the original audio signal. The experimental results demonstrate that watermark is inaudible and robust to many digital signal processing, such as cropping, low pass filter, additive noise.

Innovative Teaching in Systems Analysis and Design - an Action Research Project

Systems Analysis and Design is a key subject in Information Technology courses, but students do not find it easy to cope with, since it is not “precise" like programming and not exact like Mathematics. It is a subject working with many concepts, modeling ideas into visual representations and then translating the pictures into a real life system. To complicate matters users who are not necessarily familiar with computers need to give their inputs to ensure that they get the system the need. Systems Analysis and Design also covers two fields, namely Analysis, focusing on the analysis of the existing system and Design, focusing on the design of the new system. To be able to test the analysis and design of a system, it is necessary to develop a system or at least a prototype of the system to test the validity of the analysis and design. The skills necessary in each aspect differs vastly. Project Management Skills, Database Knowledge and Object Oriented Principles are all necessary. In the context of a developing country where students enter tertiary education underprepared and the digital divide is alive and well, students need to be motivated to learn the necessary skills, get an opportunity to test it in a “live" but protected environment – within the framework of a university. The purpose of this article is to improve the learning experience in Systems Analysis and Design through reviewing the underlying teaching principles used, the teaching tools implemented, the observations made and the reflections that will influence future developments in Systems Analysis and Design. Action research principles allows the focus to be on a few problematic aspects during a particular semester.

Application of Formal Methods for Designing a Separation Kernel for Embedded Systems

A separation-kernel-based operating system (OS) has been designed for use in secure embedded systems by applying formal methods to the design of the separation-kernel part. The separation kernel is a small OS kernel that provides an abstract distributed environment on a single CPU. The design of the separation kernel was verified using two formal methods, the B method and the Spin model checker. A newly designed semi-formal method, the extended state transition method, was also applied. An OS comprising the separation-kernel part and additional OS services on top of the separation kernel was prototyped on the Intel IA-32 architecture. Developing and testing of a prototype embedded application, a point-of-sale application, on the prototype OS demonstrated that the proposed architecture and the use of formal methods to design its kernel part are effective for achieving a secure embedded system having a high-assurance separation kernel.