Research on the Layout of Ground Control Points in Plain area 1:10000 DLG Production Using POS Technique

POS (also been called DGPS/IMU) technique can obtain the Exterior Orientation Elements of aerial photo, so the triangulation and DLG production using POS can save large numbers of ground control points (GCP), and this will improve the produce efficiency of DLG and reduce the cost of collecting GCP. This paper mainly research on POS technique in production of 1:10 000 scale DLG on GCP distribution. We designed 23 kinds of ground control points distribution schemes, using integrated sensor direction method to do the triangulation experiments, based on the results of triangulation, we produce a map with the scale of 1:10 000 and test its accuracy. This paper put forward appropriate GCP distributing schemes by experiments and research above, and made preparations for the application of POS technique on photogrammetry 4D data production.

Case on Manufacturing Cell Formation Using Production Flow Analysis

This paper offers a case study, in which methodological aspects of cell design for transformation the production process are applied. The cell redesign in this work is tightly focused to reach optimization of material flows under real manufacturing conditions. Accordingly, more individual techniques were aggregated into compact methodical procedure with aim to built one-piece flow production. Case study was concentrated on relatively typical situation of transformation from batch production to cellular manufacturing.

The Effect of Methionine and Acetate Concentrations on Mycophenolic Acid Production by Penicillium bervicompactum MUCL 19011 in Submerged Culture

Mycophenolic acid “MPA" is a secondary metabolite of Penicillium bervicompactum with antibiotic and immunosuppressive properties. In this study, fermentation process was established for production of mycophenolic acid by Penicillium bervicompactum MUCL 19011 in shake flask. The maximum MPA production, product yield and productivity were 1.379 g/L, 18.6 mg/g glucose and 4.9 mg/L.h respectively. Glucose consumption, biomass and MPA production profiles were investigated during fermentation time. It was found that MPA production starts approximately after 180 hours and reaches to a maximum at 280 h. In the next step, the effects of methionine and acetate concentrations on MPA production were evaluated. Maximum MPA production, product yield and productivity (1.763 g/L, 23.8 mg/g glucose and 6.30 mg/L. h respectively) were obtained with using 2.5 g/L methionine in culture medium. Further addition of methionine had not more positive effect on MPA production. Finally, results showed that the addition of acetate to the culture medium had not any observable effect on MPA production

The Safety of WiMAX Insolid Propellant Rocket Production

With the advance in wireless networking, IEEE 802.16 WiMAX technology has been widely deployed for several applications such as “last mile" broadband service, cellular backhaul, and high-speed enterprise connectivity. As a result, military employed WiMAX as a high-speed wireless connection for data-link because of its point to multi-point and non-line-of-sight (NLOS) capability for many years. However, the risk of using WiMAX is a critical factor in some sensitive area of military applications especially in ammunition manufacturing such as solid propellant rocket production. The US DoD policy states that the following certification requirements are met for WiMAX: electromagnetic effects on the environment (E3) and Hazards of Electromagnetic Radiation to Ordnance (HERO). This paper discuses the Recommended Power Densities and Safe Separation Distance (SSD) for HERO on WiMAX systems deployed on solid propellant rocket production. The result of this research found that WiMAX is safe to operate at close proximity distances to the rocket production based on AF Guidance Memorandum immediately changing AFMAN 91-201.

Water Vapor Plasma Torch: Design, Characteristics and Applications

The atmospheric pressure plasma torch with a direct current arc discharge stabilized by water vapor vortex was experimentally investigated. Overheated up to 450K water vapor was used as plasma forming gas. Plasma torch design is one of the most important factors leading to a stable operation of the device. The electrical and thermal characteristics of the plasma torch were determined during the experimental investigations. The design and the basic characteristics of the water vapor plasma torch are presented in the paper. Plasma torches with the electric arc stabilized by water vapor vortex provide special performance characteristics in some plasma processing applications such as thermal plasma neutralization and destruction of organic wastes enabling to extract high caloric value synthesis gas as by-product of the process. Syngas could be used as a surrogate fuel partly replacing the dependence on the fossil fuels or used as a feedstock for hydrogen, methanol production.

Protein Production by Bacillus Subtilis Atcc 21332 in the Presence of Cymbopogon Essential Oils

Proteins levels produced by bacteria may be increased in stressful surroundings, such as in the presence of antibiotics. It appears that many antimicrobial agents or antibiotics, when used at low concentrations, have in common the ability to activate or repress gene transcription, which is distinct from their inhibitory effect. There have been comparatively few studies on the potential of antibiotics or natural compounds in nature as a specific chemical signal that can trigger a variety of biological functions. Therefore, this study was focusing on the effect of essential oils from Cymbopogon flexuosus and C. nardus in regulating proteins production by Bacillus subtilis ATCC 21332. The Minimum Inhibition Concentrations (MICs) of both essential oils on B. subtilis were determined by using microdilution assay, resulting 0.2% and 1.56% for each C. flexuosus and C. nardus subsequently. The bacteria were further exposed to each essential oils at concentration of 0.01XMIC for 2 days. The proteins were then isolated and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Protein profile showed that a band with approximate size of 250 kD was appeared for the treated bacteria with essential oils. Thus, Bacillus subtilis ATCC 21332 in stressful condition with the presence of essential oils at low concentration could induce the protein production.

Simultaneous Treatment and Catalytic Gasification of Olive Mill Wastewater under Supercritical Conditions

Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which has a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1 MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water is investigated with the use of Pt/Al2O3 and Ni/Al2O3 catalysts. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. All of the catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C), under a constant pressure of 25 MPa. For the experiments conducted with Ni/Al2O3 catalyst, the effect of five reaction times (30, 60, 90, 120 and 150 s) was investigated. However, procuring that similar gasification efficiencies could be obtained at shorter times, the experiments were made by using different reaction times (10, 15, 20, 25 and 30 s) for the case of Pt/Al2O3 catalyst. Through these experiments, the effects of temperature, time and catalyst type on the gasification yields and treatment efficiencies were investigated.

Study of Asphaltene Precipitation İnduced Formation Damage During CO2 Injection for a Malaysian Light Oil

In this work, the precipitation of asphaltene from a Malaysian light oil reservoir was studies. A series of experiments were designed and carried out to examine the effect of CO2 injection on asphaltene precipitation. Different pressures of injections were used in Dynamic flooding experiment in order to investigate the effect of pressure versus injection pore volume of CO2. These dynamic displacement tests simulate reservoir condition. Results show that by increasing the pore volume of injected gas asphaltene precipitation will increases, also rise in injection pressure causes less precipitation. Sandstone core plug was used to represent reservoir formation during displacement test; therefore it made it possible to study the effect of present of asphaltene on formation. It is found out that the precipitated asphaltene can reduce permeability and porosity which is not favorable during oil production.

Hydrogen Production by Gasification of Biomass from Copoazu Waste

Biomass is becoming a large renewable resource for power generation; it is involved in higher frequency in environmentally clean processes, and even it is used for biofuels preparation. On the other hand, hydrogen – other energy source – can be produced in a variety of methods including gasification of biomass. In this study, the production of hydrogen by gasification of biomass waste is examined. This work explores the production of a gaseous mixture with high power potential from Amazonas´ specie known as copoazu, using a counter-flow fixed-bed bioreactor.

Optimal Measures in Production Developing an Universal Decision Supporter for Evaluating Measures in a Production

Due to the recovering global economy, enterprises are increasingly focusing on logistics. Investing in logistic measures for a production generates a large potential for achieving a good starting point within a competitive field. Unlike during the global economic crisis, enterprises are now challenged with investing available capital to maximize profits. In order to be able to create an informed and quantifiably comprehensible basis for a decision, enterprises need an adequate model for logistically and monetarily evaluating measures in production. The Collaborate Research Centre 489 (SFB 489) at the Institute for Production Systems (IFA) developed a Logistic Information System which provides support in making decisions and is designed specifically for the forging industry. The aim of a project that has been applied for is to now transfer this process in order to develop a universal approach to logistically and monetarily evaluate measures in production.

Improvement of Milk Production with Half Day Milking; a Case Study of Communal Goat Housing in Sukorejo, Yogyakarta, Indonesia

The case study was conducted to show the effect of  milking method in goat called half day milking on the milk production and the growth of kids. Data were collected by  interviewing farmers and investigating goat production in the  communal goat housing from June 2008 to May 2009. The interview  was conducted to collect data about goat management. The  observations were conducted on 10 goats, which were selected based  on the uniformity of age, number of kid born/goat and the milking method in practice. The samples were divided into two groups; those  were full 3 months nursing and half day milked goats (in this group the kids were separated from goat during the previous night milking  and then the kids were allowed to suck the goat during the day). The result showed that the communal goat housing had 138 goats and 25% of the farmers milked the goat. The implementation of half day milking increased the milk production significantly (P

The Effects of Methionine and Acetate Concentrations on Mycophenolic Acid Production by Penicillium bervicompactum MUCL 19011 in Submerged Culture

Mycophenolic acid “MPA" is a secondary metabolite of Penicillium bervicompactum with antibiotic and immunosuppressive properties. In this study, fermentation process was established for production of mycophenolic acid by Penicillium bervicompactum MUCL 19011 in shake flask. The maximum MPA production, product yield and productivity were 1.379 g/L, 18.6 mg/g glucose and 4.9 mg/L.h respectively. Glucose consumption, biomass and MPA production profiles were investigated during fermentation time. It was found that MPA production starts approximately after 180 hours and reaches to a maximum at 280 h. In the next step, the effects of methionine and acetate concentrations on MPA production were evaluated. Maximum MPA production, product yield and productivity (1.763 g/L, 23.8 mg/g glucose and 6.30 mg/L. h respectively) were obtained with using 2.5 g/L methionine in culture medium. Further addition of methionine had not more positive effect on MPA production. Finally, results showed that the addition of acetate to the culture medium had not any observable effect on MPA production.

The Kinetic of Biodegradation Lignin in Water Hyacinth (Eichhornia Crassipes) by Phanerochaete Chrysosporium using Solid State Fermentation (SSF) Method for Bioethanol Production, Indonesia

Lignocellulosic materials are considered the most abundant renewable resource available for the Bioethanol Production. Water Hyacinth is one of potential raw material of the world-s worst aquatic plant as a feedstock to produce Bioethanol. The purposed this research is obtain reduced of matter for biodegradation lignin in Biological pretreatment with White Rot Fungi eg. Phanerochaete Chrysosporium using Solid state Fermentation methods. Phanerochaete Chrysosporium is known to have the best ability to degraded lignin, but simultaneously it can also degraded cellulose and hemicelulose. During 8 weeks incubation, water hyacinth occurred loss of weight reached 34,67%, while loss of lignin reached 67,21%, loss of cellulose reached 11,01% and loss of hemicellulose reached 36,56%. The kinetic of losses lignin using regression linear plot, the results is obtained constant rate (k) of reduction lignin is -0.1053 and the equation of reduction of lignin is y = wo - 0, 1.53 x

Effect of Different Fertilization Methods on Soil Biological Indexes

Fertilization plays an important role in crop growth and soil improvement. This study was conducted to determine the best fertilization system for wheat production. Experiments were arranged in a complete block design with three replications in two years. Main plots consisted of six methods of fertilization including (N1): farmyard manure; (N2): compost; (N3): chemical fertilizers; (N4): farmyard manure + compost; (N5): farmyard manure + compost + chemical fertilizers and (N6): control were arranged in sub plots. The addition of compost or farm yard manure significantly increased the soil microbial biomass carbon in comparison to the chemical fertilizer. The dehydrogenase, phosphatase and urease activities in the N3 treatment were significantly lower than in the farm yard manure and compost treatments.

Spatial Correlation Analysis between Climate Factors and Plant Production in Asia

Using 1km grid datasets representing monthly mean precipitation, monthly mean temperature, and dry matter production (DMP), we considered the regional plant production ability in Southeast and South Asia, and also employed pixel-by-pixel correlation analysis to assess the intensity of relation between climate factors and plant production. While annual DMP in South Asia was approximately less than 2,000kg, the one in most part of Southeast Asia exceeded 2,500 - 3,000kg. It suggested that plant production in Southeast Asia was superior to South Asia, however, Rain-Use Efficiency (RUE) representing dry matter production per 1mm precipitation showed that inland of Indochina Peninsula and India were higher than islands in Southeast Asia. By the results of correlation analysis between climate factors and DMP, while the area in most parts of Indochina Peninsula indicated negative correlation coefficients between DMP and precipitation or temperature, the area in Malay Peninsula and islands showed negative correlation to precipitation and positive one to temperature, and most part of India dominating South Asia showed positive to precipitation and negative to temperature. In addition, the areas where the correlation coefficients exceeded |0.8| were regarded as “susceptible" to climate factors, and the areas smaller than |0.2| were “insusceptible". By following the discrimination, the map implying expected impacts by climate change was provided.

Customer Knowledge and Service Development, the Web 2.0 Role in Co-production

The paper is concerned with relationships between SSME and ICTs and focuses on the role of Web 2.0 tools in the service development process. The research presented aims at exploring how collaborative technologies can support and improve service processes, highlighting customer centrality and value coproduction. The core idea of the paper is the centrality of user participation and the collaborative technologies as enabling factors; Wikipedia is analyzed as an example. The result of such analysis is the identification and description of a pattern characterising specific services in which users collaborate by means of web tools with value co-producers during the service process. The pattern of collaborative co-production concerning several categories of services including knowledge based services is then discussed.

Effect of Cassava Root Ensiled with Cassava Top or Legumes on Feed Intake and Digestibility of Dairy Cows

The effect of cassava root ensiled with cassava top or legumes on voluntary feed intake and milk production were determined in 12 dairy cows using a 4×3 change-over design. Experimental period were 30 days long and consisted of 14 days of adaptation. Silage was prepared from cassava root mixed with cassava top or legumes at ratio 60:40. Cows were allotted at random to receive ad libitum one of four rations: T1) control, T2) cassava root +cassava top-silages, T3) cassava root +hamata - silages and T4) cassava root +Thapra stylo-silages. The dry matter intake (BW0.75) was higher (P< 0.05) in cow fed with silages diets compared with T1. However, the intake of T2 was higher among treatments. Milk production was lowest in cow fed with T1. Among silages based diets, milk production was not significantly different but 4%FCM was higher in cow fed T2. Milk compositions were not affected by feeding diets. It is concluded that feeding cassava root ensiled with its leaves as a supplement increased dry matter intake and significantly improved 4%FCM. The combination of cassava root and legume silages did not improve the feed intake but did increase the milk production.

Microbial Production of Levan using Date Syrup and Investigation of Its Properties

Levan, an exopolysaccharide, was produced by Microbacterium laevaniformans and its yield was characterized as a function of concentrations of date syrup, sucrose and the fermentation time. The optimum condition for levan production from sucrose was at concentration of 20% sucrose for 48 h and for date syrup was 25% for 48 h. The results show that an increase in fermentation time caused a decrease in the levan production at all concentrations of date syrup tested. Under these conditions after 48 h in sucrose medium, levan production reached 48.9 g/L and for date syrup reached 10.48 g/L . The effect of pH on the yield of the purified levan was examined and the optimum pH for levan production was determined to be 6.0. Levan was composed mainly of fructose residues when analyzed by TLC and FT-IR spectroscopy. Date syrup is a cheap substrate widely available in Iran and has potential for levan production. The thermal stability of levan was assessed by Thermo Gravimetric Analysis (TGA) that revealed the onset of decomposition near to 49°C for the levan produced from sucrose and 51°C for the levan from date syrup. DSC results showed a single Tg at 98°C for levan produced from sucrose and 206 °C for levan from date syrup.

Neutron Flux Characterization for Radioisotope Production at ETRR-2

The thermal, epithermal and fast fluxes were calculated for three irradiation channels at Egypt Second Research Reactor (ETRR-2) using CITVAP code. The validity of the calculations was verified by experimental measurements. There are some deviations between measurements and calculations. This is due to approximations in the calculation models used, homogenization of regions, condensation of energy groups and uncertainty in nuclear data used. Neutron flux data for the three irradiation channels are now available. This would enable predicting the irradiation conditions needed for future radioisotope production.

Radioactivity of the Agricultural Soil in Northern Province of Serbia, Vojvodina

During the year 1999, Serbia (ex Yugoslavia) and their northern province, Vojvodina, has been bombarded. Because of that general public believe is that this region was contaminated by depleted uranium and that there is a potential contaminant of agricultural products due to soil radioactivity. This paper presents the repeated analysis of agricultural soil samples in Vojvodina. The same investigation was carried out during the year 2001, and it was concluded that, based on the gamma-spectrometric analysis of 50 soil samples taken from the region of Vojvodina, there haven-t been registered any increase of radioactivity that could endanger the food production. We continue with the monitoring of this region. The comparison between those two sets of results is presented.