Thermodynamic, Structural and Transport Properties of Molten Copper-Thallium Alloys

A self-association model has been used to understand the concentration dependence of free energy of mixing (GM), heat of mixing (HM), entropy of mixing (SM), activity (a) and microscopic structures, such as concentration fluctuation in long wavelength limit (Scc(0)) and Warren-Cowley short range order parameter ( 1 α )for Cu- Tl molten alloys at 1573K. A comparative study of surface tension of the alloys in the liquid state at that temperature has also been carried out theoretically as function of composition in the light of Butler-s model, Prasad-s model and quasi-chemical approach. Most of the computed thermodynamic properties have been found in agreement with the experimental values. The analysis reveals that the Cu-Tl molten alloys at 1573K represent a segregating system at all concentrations with moderate interaction. Surface tensions computed from different approaches have been found to be comparable to each other showing increment with the composition of copper.

Clinical Benefits of an Embedded Decision Support System in Anticoagulant Control

Computer-based decision support (CDSS) systems can deliver real patient care and increase chances of long-term survival in areas of chronic disease management prone to poor control. One such CDSS, for the management of warfarin, is described in this paper and the outcomes shown. Data is derived from the running system and show a performance consistently around 20% better than the applicable guidelines.

Improved p-Xylene Selectivity of n-Pentane Aromatization over Silylated Ga-exchanged HZSM- 5 Catalysts

In this study, the conversion of n-pentane to aromatics is investigated on HZSM-5 zeolites modified by Ga ion-exchange and silylation using tetraethyl orthosilicate (TEOS) via chemical liquid deposition (CLD). The effect of SiO2/Al2O3 ratios of HZSM-5 was also studied. Parameters in preparing catalysts i.e. TEOS loading and cycles of deposition were varied to obtain the optimal condition for enhancing p-xylene selectivity. The highest p-xylene selectivity 99.7% was achieved when the amount of TEOS was 20 vol.%.The catalysts were characterized by TPD, TPO, XRF, and BET. Results show that the conversion of n-pentane was influenced remarkably by the SiO2/Al2O3 ratios of HZSM-5. The highest p-xylene selectivity 99.7% was achieved when the amount of TEOS was 20 vol.%. And cycles of deposition greatly improves HZSM-5 shape-selectivity.

Survey on the Possibility of Post -Earthquake Quick Inspection of Damaged Building by Ordinary People Using the European Macro-Seismic Scale 1998 (EMS-98)

In recent years, the number of natural disasters in the world has occurred frequently. After a strong earthquake occurs, multiple disasters due to tsunami, strong aftershocks or heavy snow can possible to occur. To prevent a secondary disaster and to save a life, the quick inspection of the damaged building is necessary. This paper investigated on a possibility of post earthquake quick inspection of damaged building by ordinary people which used the European Macro- Seismic Scale 1998 (EMS-98).

Evaluation of Green Roof System for Green Building Projects in Malaysia

The implementations of green roof have been widely used in the developed countries such as Germany, United Kingdom, United States and Canada. Green roof have many benefits such as aesthetic and economic value, ecological gain which are optimization of storm water management, urban heat island mitigation and energy conservation. In term of pollution, green roof can control the air and noise pollution in urban cities. The application of green roof in Malaysian building has been studied with the previous work of green roof either in Malaysia or other Asian region as like Indonesia, Singapore, Thailand, Taiwan and several other countries that have similar climate and environment as in Malaysia. These technologies of adapting green roof have been compared to the Green Building Index (GBI) of Malaysian buildings. The study has concentrated on the technical aspect of green roof system having focused on i) waste & recyclable materials ii) types of plants and method of planting and iii) green roof as tool to reduce storm water runoff. The finding of these areas will be compared to the suitability in achieving good practice of the GBI in Malaysia. Results show that most of the method are based on the countries own climate and environment. This suggests that the method of using green roof must adhere to the tropical climate of Malaysia. Suggestion of this research will be viewed in term of the sustainability of the green roof. Further research can be developed to implement the best method and application in Malaysian climate especially in urban cities and township.

Fast Segmentation for the Piecewise Smooth Mumford-Shah Functional

This paper is concerned with an improved algorithm based on the piecewise-smooth Mumford and Shah (MS) functional for an efficient and reliable segmentation. In order to speed up convergence, an additional force, at each time step, is introduced further to drive the evolution of the curves instead of only driven by the extensions of the complementary functions u + and u - . In our scheme, furthermore, the piecewise-constant MS functional is integrated to generate the extra force based on a temporary image that is dynamically created by computing the union of u + and u - during segmenting. Therefore, some drawbacks of the original algorithm, such as smaller objects generated by noise and local minimal problem also are eliminated or improved. The resulting algorithm has been implemented in Matlab and Visual Cµ, and demonstrated efficiently by several cases.

Ionic Liquid Promoted One-pot Synthesis of Benzo[b][1,4]oxazines

benzo[b][1,4]oxazines have been synthesized in good to excellent yields in the presence of the ionic liquid 1-butyl-3- methylimidazolium bromide [bmim]Br under relatively mild conditions without any added catalyst, the reaction workup is simple and the ionic liquid can be easily separated from the product and reused.

Obtain the Stress Intensity Factor (SIF) in a Medium Containing a Penny-Shaped Crack by the Ritz Method

In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, the mode I stress intensity factor (SIF) of three-dimensional penny- Shaped crack is obtained in an isotropic elastic cylindrical medium with arbitrary dimensions under arbitrary loading at the top of the cylinder, by the semi-analytical method based on the Rayleigh-Ritz method. This method that is based on minimizing the potential energy amount of the whole of the system, gives a very close results to the previous studies. Defining the displacements (elastic fields) by hypothetical functions in a defined coordinate system is the base of this research. So for creating the singularity conditions at the tip of the crack the appropriate terms should be found.

Experimental and Analytical Study of Scrap Tire Rubber Pad for Seismic Isolation

A seismic isolation pad produced by utilizing the scrap tire rubber which contains interleaved steel reinforcing cords has been proposed. The steel cords are expected to function similar to the steel plates used in conventional laminated rubber bearings. The scrap tire rubber pad (STRP) isolator is intended to be used in low rise residential buildings of highly seismic areas of the developing countries. Experimental investigation was conducted on unbonded STRP isolators, and test results provided useful information including stiffness, damping values and an eventual instability of the isolation unit. Finite element analysis (FE analysis) of STRP isolator was carried out on properly bonded samples. These types of isolators provide positive incremental force resisting capacity up to shear strain level of 155%. This paper briefly discusses the force deformation behavior of bonded STRP isolators including stability of the isolation unit.

Silver Modified TiO2/Halloysite Thin Films for Decontamination of Target Pollutants

 Sol-gel method has been used to fabricate nanocomposite films on glass substrates composed halloysite clay mineral and nanocrystalline TiO2. The methodology for the synthesis involves a simple chemistry method utilized nonionic surfactant molecule as pore directing agent along with the acetic acid-based solgel route with the absence of water molecules. The thermal treatment of composite films at 450oC ensures elimination of organic material and lead to the formation of TiO2 nanoparticles onto the surface of the halloysite nanotubes. Microscopy techniques and porosimetry methods used in order to delineate the structural characteristics of the materials. The nanocomposite films produced have no cracks and active anatase crystal phase with small crystallite size were deposited on halloysite nanotubes. The photocatalytic properties for the new materials were examined for the decomposition of the Basic Blue 41 azo dye in solution. These, nanotechnology based composite films show high efficiency for dye’s discoloration in spite of different halloysite quantities and small amount of halloysite/TiO2 catalyst immobilized onto glass substrates. Moreover, we examined the modification of the halloysite/TiO2 films with silver particles in order to improve the photocatalytic properties of the films. Indeed, the presence of silver nanoparticles enhances the discoloration rate of the Basic Blue 41 compared to the efficiencies obtained for unmodified films.

Detailed Phenomenological Study of 14N Elastically Scattered on 12C in a wide Energy Range

An experiment was performed with a 24.5 MeV 14N beam on a 12C target in the cyclotron DC-60 located in Astana, Kazakhstan, to study the elastic scattering of 14N on 12C; the scattering was also analyzed at different energies for tracking the phenomenon of remarkable structure at large angles. Its aims were to extend the measurements to very large angles, and attempt to uniquely identify the elastic scattering potential. Good agreement between the theoretical and experimental data has been obtained with suitable optical potential parameters. Optical model calculations with l -dependent imaginary potentials were also applied to the data and relatively good agreement was found.

Consolidation of Al-2024 Powder by Conventional P/M Route and ECAP – A Comparative Study

In this study, mechanically alloyed Al 2024 powder is densified by conventional sintering and by equal channel angular pressing (ECAP) with and without back pressure. The powder was encapsulated in an aluminium can for consolidation through ECAP. The properties obtained in the compacts by conventional sintering route and by ECAP are compared. The effect of conventional sintering and ECAP on consolidation behaviour of powder, microstructure, density and hardness is discussed. Room temperature back pressure aided ECAP results in nearly full denser (97% of its theoretical density) compact at room temperature. NanoIndentation technique was used to determine the modulus of the consolidated compacts.

A Frame Work for Query Results Refinement in Multimedia Databases

In the current age, retrieval of relevant information from massive amount of data is a challenging job. Over the years, precise and relevant retrieval of information has attained high significance. There is a growing need in the market to build systems, which can retrieve multimedia information that precisely meets the user's current needs. In this paper, we have introduced a framework for refining query results before showing it to the user, using ambient intelligence, user profile, group profile, user location, time, day, user device type and extracted features. A prototypic tool was also developed to demonstrate the efficiency of the proposed approach.

Effect of Particle Size in Aviation Turbine Fuel-Al2O3 Nanofluids for Heat Transfer Applications

The effect of Alumina nanoparticle size on thermophysical properties, heat transfer performance and pressure loss characteristics of Aviation Turbine Fuel (ATF)-Al2O3 nanofluids is studied experimentally for the proposed application of regenerative cooling of semi-cryogenic rocket engine thrust chambers. Al2O3 particles with mean diameters of 50 nm or 150 nm are dispersed in ATF. At 500C and 0.3% particle volume concentration, the bigger particles show increases of 17% in thermal conductivity and 55% in viscosity, whereas the smaller particles show corresponding increases of 21% and 22% for thermal conductivity and viscosity respectively. Contrary to these results, experiments to study the heat transfer performance and pressure loss characteristics show that at the same pumping power, the maximum enhancement in heat transfer coefficient at 500C and 0.3% concentration is approximately 47% using bigger particles, whereas it is only 36% using smaller particles.

Reduce of Fermentation Time in Composting Process by Using a Special Microbial Consortium

Composting is the process in which municipal solid waste (MSW) and other organic waste materials such as biosolids and manures are decomposed through the action of bacteria and other microorganisms into a stable granular material which, applied to land, as soil conditioner. Microorganisms, especially those that are able to degrade polymeric organic material have a key role in speed up this process. The aim of this study has been established to isolation of microorganisms with high ability to production extracellular enzymes for degradation of natural polymers that are exists in MSW for decreasing time of degradation phase. Our experimental study for isolation designed in two phases: in first phase we isolated degrading microorganism with selected media that consist a special natural polymer such as cellulose, starch, lipids and etc as sole source of carbon. In second phase we selected microorganism that had high degrading enzyme production with enzymatic assay for seed production. However, our findings in pilot scale have indicated that usage of this microbial consortium had high efficiency for decreasing degradation phase.

Optimization of Multicast Transmissions in NC-HMIPv6 Environment

Multicast transmissions allow an host (the source) to send only one flow bound for a group of hosts (the receivers). Any equipment eager to belong to the group may explicitly register itself to that group via its multicast router. This router will be given the responsibility to convey all information relating to the group to all registered hosts. However in an environment in which the final receiver or the source frequently moves, the multicast flows need particular treatment. This constitutes one of the multicast transmissions problems around which several proposals were made in the Mobile IPv6 case in general. In this article, we describe the problems involved in this IPv6 multicast mobility and the existing proposals for their resolution. Then architecture will be proposed aiming to satisfy and optimize these transmissions in the specific case of a mobile multicast receiver in NC-HMIPv6 environment.

Overcoming Boundaries in Science – A Plea against Political Isolations

If science is supposed to gain greater social relevance and acceptance, researchers must not only relate to the broader public, but also promote intercourse within the ivory tower itself. The latter process has been under way successfully for a number of years in the form of transdisciplinary research initiatives. What is still lacking is a broad debate about the necessity to look around properly and face up to opposing views on one and the same topic within our own discipline.

Inhibiting Gene for a Late-Heading Gene Responsible for Photoperiod Sensitivity in Rice (Oryza sativa)

Two indica varieties, IR36 and ‘Suweon 258’ (“S”) are middle-heading in southern Japan. 36U, also middle-heading, is an isogenic line of IR36 carrying Ur1 (Undulate rachis-1) gene. However, late-heading plants segregated in the F2 population from the F1 of S × 36U, and so did in the following generations. The concerning lateness gene is designated as Ex. From the F8 generation, isogenic-line pair of early-heading and late-heading lines, denoted by “E” (ex/ex) and “L” (Ex/Ex), were developed. Genetic analyses of heading time were conducted, using F1s and F2s among L, E, S and 36U. The following inferences were drawn from the experimental results: 1) L, and both of E and 36U harbor Ex and ex, respectively; 2) Besides Ex, S harbors an inhibitor gene to it, i.e. I-Ex which is a novel finding of the present study. 3) Ex is a dominant allele at the E1 locus.

A Study on Intuitionistic Fuzzy h-ideal in Γ-Hemirings

The notions of intuitionistic fuzzy h-ideal and normal intuitionistic fuzzy h-ideal in Γ-hemiring are introduced and some of the basic properties of these ideals are investigated. Cartesian product of intuitionistic fuzzy h-ideals is also defined. Finally a characterization of intuitionistic fuzzy h-ideals in terms of fuzzy relations is obtained.

Metamorphism, Formal Grammars and Undecidable Code Mutation

This paper presents a formalisation of the different existing code mutation techniques (polymorphism and metamorphism) by means of formal grammars. While very few theoretical results are known about the detection complexity of viral mutation techniques, we exhaustively address this critical issue by considering the Chomsky classification of formal grammars. This enables us to determine which family of code mutation techniques are likely to be detected or on the contrary are bound to remain undetected. As an illustration we then present, on a formal basis, a proof-of-concept metamorphic mutation engine denoted PB MOT, whose detection has been proven to be undecidable.