Visual Object Tracking and Interception in Industrial Settings

This paper presents a solution for a robotic manipulation problem. We formulate the problem as combining target identification, tracking and interception. The task in our solution is sensing a target on a conveyor belt and then intercepting robot-s end-effector at a convenient rendezvous point. We used an object recognition method which identifies the target and finds its position from visualized scene picture, then the robot system generates a solution for rendezvous problem using the target-s initial position and belt velocity . The interception of the target and the end-effector is executed at a convenient rendezvous point along the target-s calculated trajectory. Experimental results are obtained using a real platform with an industrial robot and a vision system over it.

Optimization of Multicast Transmissions in NC-HMIPv6 Environment

Multicast transmissions allow an host (the source) to send only one flow bound for a group of hosts (the receivers). Any equipment eager to belong to the group may explicitly register itself to that group via its multicast router. This router will be given the responsibility to convey all information relating to the group to all registered hosts. However in an environment in which the final receiver or the source frequently moves, the multicast flows need particular treatment. This constitutes one of the multicast transmissions problems around which several proposals were made in the Mobile IPv6 case in general. In this article, we describe the problems involved in this IPv6 multicast mobility and the existing proposals for their resolution. Then architecture will be proposed aiming to satisfy and optimize these transmissions in the specific case of a mobile multicast receiver in NC-HMIPv6 environment.