Improving Air Temperature Prediction with Artificial Neural Networks

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.

Efficient Hardware Realization of Truncated Multipliers using FPGA

Truncated multiplier is a good candidate for digital signal processing (DSP) applications including finite impulse response (FIR) and discrete cosine transform (DCT). Through truncated multiplier a significant reduction in Field Programmable Gate Array (FPGA) resources can be achieved. This paper presents for the first time a comparison of resource utilization of Spartan-3AN and Virtex-5 implementation of standard and truncated multipliers using Very High Speed Integrated Circuit Hardware Description Language (VHDL). The Virtex-5 FPGA shows significant improvement as compared to Spartan-3AN FPGA device. The Virtex-5 FPGA device shows better performance with a percentage ratio of number of occupied slices for standard to truncated multipliers is increased from 40% to 73.86% as compared to Spartan- 3AN is decreased from 68.75% to 58.78%. Results show that the anomaly in Spartan-3AN FPGA device average connection and maximum pin delay have been efficiently reduced in Virtex-5 FPGA device.

Adoptability Issues of GPS in Public Sector in Pakistan

This study discusses the stumbling blocks stifling the adoption of GPS technology in the public sector of Pakistan. This study has been carried out in order to describe the value of GPS technology and its adoption at various public sector organisations in Pakistan. Sample size for the research conducted was 200; personnel working in public sector having age above 29 years were surveyed. Data collected for this research has been quantitatively analysed with the help of SPSS. Regression analysis, correlation and cross tabulation were the techniques used to determine the strength of relationship between key variables. Findings of this research indicate that main hurdles in GPS adoption in the public sector of Pakistan are lack of awareness about GPS among masses in general and the stakeholders in particular, lack of initiative on part of government in promoting new technologies, unavailability of GPS infrastructure in Pakistan and prohibitions on map availability because of security reasons.

Customer Segmentation in Foreign Trade based on Clustering Algorithms Case Study: Trade Promotion Organization of Iran

The goal of this paper is to segment the countries based on the value of export from Iran during 14 years ending at 2005. To measure the dissimilarity among export baskets of different countries, we define Dissimilarity Export Basket (DEB) function and use this distance function in K-means algorithm. The DEB function is defined based on the concepts of the association rules and the value of export group-commodities. In this paper, clustering quality function and clusters intraclass inertia are defined to, respectively, calculate the optimum number of clusters and to compare the functionality of DEB versus Euclidean distance. We have also study the effects of importance weight in DEB function to improve clustering quality. Lastly when segmentation is completed, a designated RFM model is used to analyze the relative profitability of each cluster.

Induced Graphoidal Covers in a Graph

An induced graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most one path in ψ, every edge of G is in exactly one path in ψ and every member of ψ is an induced cycle or an induced path. The minimum cardinality of an induced graphoidal cover of G is called the induced graphoidal covering number of G and is denoted by ηi(G) or ηi. Here we find induced graphoidal cover for some classes of graphs.

ABURAS Index: A Statistically Developed Index for Dengue-Transmitting Vector Population Prediction

“Dengue" is an African word meaning “bone breaking" because it causes severe joint and muscle pain that feels like bones are breaking. It is an infectious disease mainly transmitted by female mosquito, Aedes aegypti, and causes four serotypes of dengue viruses. In recent years, a dramatic increase in the dengue fever confirmed cases around the equator-s belt has been reported. Several conventional indices have been designed so far to monitor the transmitting vector populations known as House Index (HI), Container Index (CI), Breteau Index (BI). However, none of them describes the adult mosquito population size which is important to direct and guide comprehensive control strategy operations since number of infected people has a direct relationship with the vector density. Therefore, it is crucial to know the population size of the transmitting vector in order to design a suitable and effective control program. In this context, a study is carried out to report a new statistical index, ABURAS Index, using Poisson distribution based on the collection of vector population in Jeddah Governorate, Saudi Arabia.

Effects of Mixed Convection and Double Dispersion on Semi Infinite Vertical Plate in Presence of Radiation

In this paper, the effects of radiation, chemical reaction and double dispersion on mixed convection heat and mass transfer along a semi vertical plate are considered. The plate is embedded in a Newtonian fluid saturated non - Darcy (Forchheimer flow model) porous medium. The Forchheimer extension and first order chemical reaction are considered in the flow equations. The governing sets of partial differential equations are nondimensionalized and reduced to a set of ordinary differential equations which are then solved numerically by Fourth order Runge– Kutta method. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) against various parameters are presented in graphs. The obtained results are checked against previously published work for special cases of the problem and are found to be in good agreement.

Design and Development of an MPH Program for Distance Education Delivery

The Master-s of Public Health (MPH) degree is growing in popularity among a number of higher education institutions throughout the world as a distance education graduate program. This paper offers an overview of program design and development strategies that promote successful distance delivery of MPH programs. Design and development challenges are discussed in terms of type of distance delivery, accreditation, student demand, faculty development, user needs, course content, and marketing strategies. The ongoing development of a distance education MPH program at Utah State University will be used to highlight and consider various aspects of this important but challenging process.

Image Transmission via Iterative Cellular-Turbo System

To compress, improve bit error performance and also enhance 2D images, a new scheme, called Iterative Cellular-Turbo System (IC-TS) is introduced. In IC-TS, the original image is partitioned into 2N quantization levels, where N is denoted as bit planes. Then each of the N-bit-plane is coded by Turbo encoder and transmitted over Additive White Gaussian Noise (AWGN) channel. At the receiver side, bit-planes are re-assembled taking into consideration of neighborhood relationship of pixels in 2-D images. Each of the noisy bit-plane values of the image is evaluated iteratively using IC-TS structure, which is composed of equalization block; Iterative Cellular Image Processing Algorithm (ICIPA) and Turbo decoder. In IC-TS, there is an iterative feedback link between ICIPA and Turbo decoder. ICIPA uses mean and standard deviation of estimated values of each pixel neighborhood. It has extra-ordinary satisfactory results of both Bit Error Rate (BER) and image enhancement performance for less than -1 dB Signal-to-Noise Ratio (SNR) values, compared to traditional turbo coding scheme and 2-D filtering, applied separately. Also, compression can be achieved by using IC-TS systems. In compression, less memory storage is used and data rate is increased up to N-1 times by simply choosing any number of bit slices, sacrificing resolution. Hence, it is concluded that IC-TS system will be a compromising approach in 2-D image transmission, recovery of noisy signals and image compression.

Boundary Effect on the Onset of Marangoni Convection with Internal Heat Generation

The onset of Marangoni convection in a horizontal fluid layer with internal heat generation overlying a solid layer heated from below is studied. The upper free surface of a fluid is nondeformable and the bottom boundary are rigid and no-slip. The resulting eigenvalue problem is solved exactly. The critical values of the Marangoni numbers for the onset of Marangoni convection are calculated and the latter is found to be critically dependent on the internal heating, depth ratio and conductivity ratio. The effects of the thermal conductivity and the thickness of the solid plate on the onset of convective instability with internal heating are studied in detail.

Effects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness

A two dimensional numerical simulation has been performed for incompressible and compressible fluid flow through microchannels in slip flow regime. The Navier-Stokes equations have been solved in conjunction with Maxwell slip conditions for modeling flow field associated with slip flow regime. The wall roughness is simulated with triangular microelements distributed on wall surfaces to study the effects of roughness on fluid flow. Various Mach and Knudsen numbers are used to investigate the effects of rarefaction as well as compressibility. It is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases. In addition, similar to incompressible models the increase in average fRe is more significant at low Knudsen number flows but the increase of Poiseuille number duo to relative roughness is sharper for compressible models. The numerical results have also validated with some available theoretical and experimental relations and good agreements have been seen.

Simulating Dynamics of Thoracolumbar Spine Derived from Life MOD under Haptic Forces

In this paper, the construction of a detailed spine model is presented using the LifeMOD Biomechanics Modeler. The detailed spine model is obtained by refining spine segments in cervical, thoracic and lumbar regions into individual vertebra segments, using bushing elements representing the intervertebral discs, and building various ligamentous soft tissues between vertebrae. In the sagittal plane of the spine, constant force will be applied from the posterior to anterior during simulation to determine dynamic characteristics of the spine. The force magnitude is gradually increased in subsequent simulations. Based on these recorded dynamic properties, graphs of displacement-force relationships will be established in terms of polynomial functions by using the least-squares method and imported into a haptic integrated graphic environment. A thoracolumbar spine model with complex geometry of vertebrae, which is digitized from a resin spine prototype, will be utilized in this environment. By using the haptic technique, surgeons can touch as well as apply forces to the spine model through haptic devices to observe the locomotion of the spine which is computed from the displacement-force relationship graphs. This current study provides a preliminary picture of our ongoing work towards building and simulating bio-fidelity scoliotic spine models in a haptic integrated graphic environment whose dynamic properties are obtained from LifeMOD. These models can be helpful for surgeons to examine kinematic behaviors of scoliotic spines and to propose possible surgical plans before spine correction operations.

Forming the Differential-Algebraic Model of Radial Power Systems for Simulation of both Transient and Steady-State Conditions

This paper presents a procedure of forming the mathematical model of radial electric power systems for simulation of both transient and steady-state conditions. The research idea has been based on nodal voltages technique and on differentiation of Kirchhoff's current law (KCL) applied to each non-reference node of the radial system, the result of which the nodal voltages has been calculated by solving a system of algebraic equations. Currents of the electric power system components have been determined by solving their respective differential equations. Transforming the three-phase coordinate system into Cartesian coordinate system in the model decreased the overall number of equations by one third. The use of Cartesian coordinate system does not ignore the DC component during transient conditions, but restricts the model's implementation for symmetrical modes of operation only. An example of the input data for a four-bus radial electric power system has been calculated.

Evaluation the Distribution of Implant Supported Prostheses between 2005-2009 Years

The aim of this retrospective study was to evaluate the parameters of dental implants such as patient gender, number of implant, failed implant before prosthetic restorations and failed implant after implantation and failed implant after prosthetic restorations. 135 male and 99 female patients, total 234 implant patients which have been treated with 450 implant between 2005- 2009 years in GATA Haydarpasa Training Hospital Dental Service. Twelve implants were failed before prosthetic restorations. Four implant were failed after fixed prosthetic restorations. Cumulative survival rate after prostheses were 97.56 % during 6 years period.

Bitrate Reduction Using FMO for Video Streaming over Packet Networks

Flexible macroblock ordering (FMO), adopted in the H.264 standard, allows to partition all macroblocks (MBs) in a frame into separate groups of MBs called Slice Groups (SGs). FMO can not only support error-resilience, but also control the size of video packets for different network types. However, it is well-known that the number of bits required for encoding the frame is increased by adopting FMO. In this paper, we propose a novel algorithm that can reduce the bitrate overhead caused by utilizing FMO. In the proposed algorithm, all MBs are grouped in SGs based on the similarity of the transform coefficients. Experimental results show that our algorithm can reduce the bitrate as compared with conventional FMO.

A Phenomic Algorithm for Reconstruction of Gene Networks

The goal of Gene Expression Analysis is to understand the processes that underlie the regulatory networks and pathways controlling inter-cellular and intra-cellular activities. In recent times microarray datasets are extensively used for this purpose. The scope of such analysis has broadened in recent times towards reconstruction of gene networks and other holistic approaches of Systems Biology. Evolutionary methods are proving to be successful in such problems and a number of such methods have been proposed. However all these methods are based on processing of genotypic information. Towards this end, there is a need to develop evolutionary methods that address phenotypic interactions together with genotypic interactions. We present a novel evolutionary approach, called Phenomic algorithm, wherein the focus is on phenotypic interaction. We use the expression profiles of genes to model the interactions between them at the phenotypic level. We apply this algorithm to the yeast sporulation dataset and show that the algorithm can identify gene networks with relative ease.

Results of Percutaneous Nephrolithotomy under Spinal Anesthesia

Recently, there has been a considerable increase in the number of procedures carried out under regional anesthesia. However, percutaneous nephrolithotomy (PCNL) procedures are usually performed under general anesthesia. The aim of this study was to assess the safety and efficacy of PCNL under spinal anesthesia in patients with renal calculi. We describe our 9 years experience of performing PCNL under spinal anesthesia for 387 patients with large stones of the upper urinary tract, with regard to the effectiveness and side effects. All patients received spinal anesthetics (Lidocain 5%, or Bupivacaine 0.75%) and underwent PCNL in prone position. The success rate was 94.1%. The incidence of complications was 11.6%. PCNL under spinal anesthesia is feasible, safe, and well-tolerated in management of patients with renal stones.

Palynomorphological Data of Pollen Grains of Lamium garganicum

This study shows palynomorphological description of pollen grains of Lamium garganicum, species of the family Labiatae. Fresh material of this plant is taken in Mount Llogara, in Albania. By comparison made between palinomorphological characteristics of pollen grains of Lamium garganicum with those of Lamium maculatum and Lamium purpureum, showed that granules have similarities in the number of furrows. The pollen grains of Lamium garganicum were larger in length and width than those of Lamium maculatum and almost equal with those of Lamium purpureum. Furrows are longer than those of pollen grains in Lamium maculatum and shorter than those of Lamium purpureum. The layer of exine of Lamium garganicum was thinner than that of two others. The sculpture of exine was fine reticulate, where reticulas were uniform whereas in Lamium purpureum was verrucate, with small verrucae; in Lamium maculatum was reticulate.

Numerical Simulation of CNT Incorporated Cement

Cement, the most widely used construction material is very brittle and characterized by low tensile strength and strain capacity. Macro to nano fibers are added to cement to provide tensile strength and ductility to it. Carbon Nanotube (CNT), one of the nanofibers, has proven to be a promising reinforcing material in the cement composites because of its outstanding mechanical properties and its ability to close cracks at the nano level. The experimental investigations for CNT reinforced cement is costly, time consuming and involves huge number of trials. Mathematical modeling of CNT reinforced cement can be done effectively and efficiently to arrive at the mechanical properties and to reduce the number of trials in the experiments. Hence, an attempt is made to numerically study the effective mechanical properties of CNT reinforced cement numerically using Representative Volume Element (RVE) method. The enhancement in its mechanical properties for different percentage of CNTs is studied in detail.