Climate Change Effect from Black Carbon Emission: Open Burning of Corn Residues in Thailand

This study focuses on emission of black carbon (BC) from field open burning of corn residues. Real-time BC concentration was measured by Micro Aethalometer from field burning and simulated open burning in a chamber (SOC) experiments. The average concentration of BC was 1.18±0.47 mg/m3 in the field and 0.89±0.63 mg/m3 in the SOC. The deduced emission factor from field experiments was 0.50±0.20 gBC/kgdm, and 0.56±0.33 gBC/kgdm from SOC experiment, which are in good agreement with other studies. In 2007, the total burned area of corn crop was 8,000 ha, resulting in an emission load of BC 20 ton corresponding to 44.5 million kg CO2 equivalent. Therefore, the control of open burning in corn field represents a significant global warming reduction option.

Planar Tracking Control of an Underactuated Autonomous Underwater Vehicle

This paper addresses the problem of trajectory tracking control of an underactuated autonomous underwater vehicle (AUV) in the horizontal plane. The underwater vehicle under consideration is not actuated in the sway direction, and the system matrices are not assumed to be diagonal and linear, as often found in the literature. In addition, the effect of constant bias of environmental disturbances is considered. Using backstepping techniques and the tracking error dynamics, the system states are stabilized by forcing the tracking errors to an arbitrarily small neighborhood of zero. The effectiveness of the proposed control method is demonstrated through numerical simulations. Simulations are carried out for an experimental vehicle for smooth, inertial, two dimensional (2D) reference trajectories such as constant velocity trajectory (a circle maneuver – constant yaw rate), and time varying velocity trajectory (a sinusoidal path – sinusoidal yaw rate).

Control of Pressure Gradient in the Contraction of a Wind Tunnel

Subsonic wind tunnel experiments were conducted to study the effect of tripped boundary layer on the pressure distribution in the contraction region of the tunnel. Measurements were performed by installing trip strip at two different positions in the concave portion of the contraction. The results show that installation of the trip strips, have significant effects on both turbulence and pressure distribution. The reduction in the free stream turbulence and reduction of the wall static pressure distribution deferred signified with the location of the trip strip.

Acceptance Single Sampling Plan with Fuzzy Parameter with The Using of Poisson Distribution

This purpose of this paper is to present the acceptance single sampling plan when the fraction of nonconforming items is a fuzzy number and being modeled based on the fuzzy Poisson distribution. We have shown that the operating characteristic (oc) curves of the plan is like a band having a high and low bounds whose width depends on the ambiguity proportion parameter in the lot when that sample size and acceptance numbers is fixed. Finally we completed discuss opinion by a numerical example. And then we compared the oc bands of using of binomial with the oc bands of using of Poisson distribution.

A 7DOF Manipulator Control in an Unknown Environment based on an Exact Algorithm

An exact algorithm for a n-link manipulator movement amidst arbitrary unknown static obstacles is presented. The algorithm guarantees the reaching of a target configuration of the manipulator in a finite number of steps. The algorithm is reduced to a finite number of calls of a subroutine for planning a trajectory in the presence of known forbidden states. The polynomial approximation algorithm which is used as the subroutine is presented. The results of the exact algorithm implementation for the control of a seven link (7 degrees of freedom, 7DOF) manipulator are given.

New Feed-Forward/Feedback Generalized Minimum Variance Self-tuning Pole-placement Controller

A new Feed-Forward/Feedback Generalized Minimum Variance Pole-placement Controller to incorporate the robustness of classical pole-placement into the flexibility of generalized minimum variance self-tuning controller for Single-Input Single-Output (SISO) has been proposed in this paper. The design, which provides the user with an adaptive mechanism, which ensures that the closed loop poles are, located at their pre-specified positions. In addition, the controller design which has a feed-forward/feedback structure overcomes the certain limitations existing in similar poleplacement control designs whilst retaining the simplicity of adaptation mechanisms used in other designs. It tracks set-point changes with the desired speed of response, penalizes excessive control action, and can be applied to non-minimum phase systems. Besides, at steady state, the controller has the ability to regulate the constant load disturbance to zero. Example simulation results using both simulated and real plant models demonstrate the effectiveness of the proposed controller.

Intelligent Control and Modelling of a Micro Robot for In-pipe Application

In this paper, a worm-like micro robot designed for inpipe application with intelligent active force control (AFC) capability is modelled and simulated. The motion of the micro robot is based on an impact drive mechanism (IDM) that is actuated using piezoelectric device. The trajectory tracking performance of the modelled micro robot is initially experimented via a conventional proportionalintegral- derivative (PID) controller in which the dynamic response of the robot system subjected to different input excitations is investigated. Subsequently, a robust intelligent method known as active force control with fuzzy logic (AFCFL) is later incorporated into the PID scheme to enhance the system performance by compensating the unwanted disturbances due to the interaction of the robot with its environment. Results show that the proposed AFCFL scheme is far superior than the PID control counterpart in terms of the system-s tracking capability in the wake of the disturbances.

A New Approach to the Approximate Solutions of Hamilton-Jacobi Equations

We propose a new approach on how to obtain the approximate solutions of Hamilton-Jacobi (HJ) equations. The process of the approximation consists of two steps. The first step is to transform the HJ equations into the virtual time based HJ equations (VT-HJ) by introducing a new idea of ‘virtual-time’. The second step is to construct the approximate solutions of the HJ equations through a computationally iterative procedure based on the VT-HJ equations. It should be noted that the approximate feedback solutions evolve by themselves as the virtual-time goes by. Finally, we demonstrate the effectiveness of our approximation approach by means of simulations with linear and nonlinear control problems.

Evaluation of Power Factor Corrected AC - DC Converters and Controllers to meet UPS Performance Index

Harmonic pollution and low power factor in power systems caused by power converters have been of great concern. To overcome these problems several converter topologies using advanced semiconductor devices and control schemes have been proposed. This investigation is to identify a low cost, small size, efficient and reliable ac to dc converter to meet the input performance index of UPS. The performance of single phase and three phase ac to dc converter along with various control techniques are studied and compared. The half bridge converter topology with linear current control is identified as most suitable. It is simple, energy efficient because of single switch power loss and transformer-less operation of UPS. The results are validated practically using a prototype built using IGBT and analog controller. The performance for both single and three-phase system is verified. Digital implementation of closed loop control achieves higher reliability. Its cost largely depends on chosen bit precision. The minimal bit precision for optimum converter performance is identified as 16-bit with fixed-point operation. From the investigation and practical implementation it is concluded that half bridge ac – dc converter along with digital linear controller meets the performance index of UPS for single and three phase systems.

Pre-germinated Parboiled Brown Rice Drying Using Fluidization Technique

Pre-germinated parboiled brown rice or Khao hang (in Thai) is paddy which undergoing the processes of soaking, steaming, drying and dehusking to obtain the edible form for consumption. The objectives of this research were to study the kinetic of pre-germinated parboiled brown rice drying using fluidization technique and to study the properties of pre-germinated parboiled brown rice after drying. The dryings were performed at the different temperatures of 110, 120 and 130 oC at the bed depth of 2 cm with the air velocity of 1.98 m/s. The results found that the higher drying temperature led to the faster moisture reduction. After drying until the moisture content of pre-germinated parboiled brown rice was lower than 14%wet basis, samples were taken to determine various qualities such as percentage of head rice and L* a* b* color values. The shade drying was used as a control. The results found that the higher drying temperature resulted in the decrease of head rice percentage. For the color assessment, the trend of L* and a* values was increased with the drying temperature, while the b* value was not significantly difference (p › 0.05) by drying temperatures. However, the b value of drying by fluidized bed dryer was higher than the control.

Effect of Rotation Rate on Chemical Segragation during Phase Change

Numerical parametric study is conducted to study the effects of ampoule rotation on the flows and the dopant segregation in vertical bridgman (vb) crystal growth. Calculations were performed in unsteady state. The extended darcy model, which includes the time derivative and coriolis terms, has been employed in the momentum equation. It’s found that the convection, and dopant segregation can be affected significantly by ampoule rotation, and the effect is similar to that by an axial magnetic field. Ampoule rotation decreases the intensity of convection and stretches the flow cell axially. When the convection is weak, the flow can be suppressed almost completely by moderate ampoule rotation and the dopant segregation becomes diffusion-controlled. For stronger convection, the elongated flow cell by ampoule rotation may bring dopant mixing into the bulk melt reducing axial segregation at the early stage of the growth. However, if the cellular flow cannot be suppressed completely, ampoule rotation may induce larger radial segregation due to poor mixing.

Research of Ring MEMS Rate Integrating Gyroscopes

This paper To get the angle value with a MEMS rate gyroscope in some specific field, the usual method is to make an integral operation to the rate output, which will lead the error cumulating effect. So the rate gyro is not suitable. MEMS rate integrating gyroscope (MRIG) will solve this problem. A DSP system has been developed to implement the control arithmetic. The system can measure the angle of rotation directly by the control loops that make the sensor work in whole-angle mode. Modeling the system with MATLAB, desirable results of angle outputs are got, which prove the feasibility of the control arithmetic.

A Study on the Modeling and Analysis of an Electro-Hydraulic Power Steering System

Electro-hydraulic power steering (EHPS) system for the fuel rate reduction and steering feel improvement is comprised of ECU including the logic which controls the steering system and BL DC motor and produces the best suited cornering force, BLDC motor, high pressure pump integrated module and basic oil-hydraulic circuit of the commercial HPS system. Electro-hydraulic system can be studied in two ways such as experimental and computer simulation. To get accurate results in experimental study of EHPS system, the real boundary management is necessary which is difficult task. And the accuracy of the experimental results depends on the preparation of the experimental setup and accuracy of the data collection. The computer simulation gives accurate and reliable results if the simulation is carried out considering proper boundary conditions. So, in this paper, each component of EHPS was modeled, and the model-based analysis and control logic was designed by using AMESim

Synthesis of ZnO Nanostructures via Gel-casting Method

In this study, ZnO nano rods and ZnO ultrafine particles were synthesized by Gel-casting method. The synthesized ZnO powder has a hexagonal zincite structure. The ZnO aggregates with rod-like morphology are typically 1.4 μm in length and 120 nm in diameter, which consist of many small nanocrystals with diameters of 10 nm. Longer wires connected by many hexahedral ZnO nanocrystals were obtained after calcinations at the temperature over 600° C.The crystalline structures and morphologies of the powder have been characterized by X-ray diffraction(XRD) and Scaning electron microscopy (SEM).The result shows that the different preparation conditions such as concentration H2O, calcinations time and calcinations temperature have a lot of influences upon the properties of nano ZnO powders, an increase in the temperature of the calcinations results in an increase of the grain size and also the increase of the calcinations time in high temperature makes the size of the grains bigger. The existences of extra watter prevent nano grains from improving like rod morphology. We have obtained the smallest grain size of ZnO powder by controlling the process conditions. Finally In a suitable condition, a novel nanostructure, namely bi-rod-like ZnO nano rods was found which is different from known ZnO nanostructures.

Optimization of Transfer Pricing in a Recession with Reflection on Croatian Situation

Countries in recession, among them Croatia, have lower tax revenues as a result of unfavorable economic situation, which is decrease of the economic activities and unemployment. The global tax base has decreased. In order to create larger state revenues, states use the institute of tax authorities. By controlling transfer pricing in the international companies and using certain techniques, tax authorities can create greater tax obligations for the companies in a short period of time.

Risk-Management by Numerical Pattern Analysis in Data-Mining

In this paper a new method is suggested for risk management by the numerical patterns in data-mining. These patterns are designed using probability rules in decision trees and are cared to be valid, novel, useful and understandable. Considering a set of functions, the system reaches to a good pattern or better objectives. The patterns are analyzed through the produced matrices and some results are pointed out. By using the suggested method the direction of the functionality route in the systems can be controlled and best planning for special objectives be done.

Investigation of Chaotic Behavior in DC-DC Converters

DC-DC converters are widely used in regulated switched mode power supplies and in DC motor drive applications. There are several sources of unwanted nonlinearity in practical power converters. In addition, their operation is characterized by switching that gives birth to a variety of nonlinear dynamics. DC-DC buck and boost converters controlled by pulse-width modulation (PWM) have been simulated. The voltage waveforms and attractors obtained from the circuit simulation have been studied. With the onset of instability, the phenomenon of subharmonic oscillations, quasi-periodicity, bifurcations, and chaos have been observed. This paper is mainly motivated by potential contributions of chaos theory in the design, analysis and control of power converters, in particular and power electronics circuits, in general.

Improved Fuzzy Neural Modeling for Underwater Vehicles

The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models- parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance.

Adaptive Nonlinear Backstepping Control

This paper presents an adaptive nonlinear position controller with velocity constraint, capable of combining the input-output linearization technique and Lyapunov stability theory. Based on the Lyapunov stability theory, the adaptation law of the proposed controller is derived along with the verification of the overall system-s stability. Computer simulation results demonstrate that the proposed controller is robust and it can ensure transient stability of BLDCM, under the occurrence of a large sudden fault.

Tracking Control of a Linear Parabolic PDE with In-domain Point Actuators

This paper addresses the problem of asymptotic tracking control of a linear parabolic partial differential equation with indomain point actuation. As the considered model is a non-standard partial differential equation, we firstly developed a map that allows transforming this problem into a standard boundary control problem to which existing infinite-dimensional system control methods can be applied. Then, a combination of energy multiplier and differential flatness methods is used to design an asymptotic tracking controller. This control scheme consists of stabilizing state-feedback derived from the energy multiplier method and feed-forward control based on the flatness property of the system. This approach represents a systematic procedure to design tracking control laws for a class of partial differential equations with in-domain point actuation. The applicability and system performance are assessed by simulation studies.