Investigation of Chaotic Behavior in DC-DC Converters

DC-DC converters are widely used in regulated switched mode power supplies and in DC motor drive applications. There are several sources of unwanted nonlinearity in practical power converters. In addition, their operation is characterized by switching that gives birth to a variety of nonlinear dynamics. DC-DC buck and boost converters controlled by pulse-width modulation (PWM) have been simulated. The voltage waveforms and attractors obtained from the circuit simulation have been studied. With the onset of instability, the phenomenon of subharmonic oscillations, quasi-periodicity, bifurcations, and chaos have been observed. This paper is mainly motivated by potential contributions of chaos theory in the design, analysis and control of power converters, in particular and power electronics circuits, in general.

Estimating Correlation Dimension on Japanese Candlestick, Application to FOREX Time Series

Recognizing behavioral patterns of financial markets is essential for traders. Japanese candlestick chart is a common tool to visualize and analyze such patterns in an economic time series. Since the world was introduced to Japanese candlestick charting, traders saw how combining this tool with intelligent technical approaches creates a powerful formula for the savvy investors. This paper propose a generalization to box counting method of Grassberger-Procaccia, which is based on computing the correlation dimension of Japanese candlesticks instead commonly used 'close' points. The results of this method applied on several foreign exchange rates vs. IRR (Iranian Rial). Satisfactorily show lower chaotic dimension of Japanese candlesticks series than regular Grassberger-Procaccia method applied merely on close points of these same candles. This means there is some valuable information inside candlesticks.