Entrepreneurial Challenges Confronting Micro Enterprise of Malaysian Malays

This research focuses on micro-enterprise of Malaysian Malays that are involved in very small-scaled business activities. Among them include food stall and burger stall operators, night market hawkers, grocery store operators as well as construction and small service activities works. The study seeks to explore why some micro-entrepreneurs still lag in entrepreneurship and what needs to be rectified. This quantitative study is conducted on 173 Malay micro-enterprise owners (MEOs) and 58 Malay failed microenterprise owners (FMEOs) involved in all range of businesses throughout the state of Perak, Malaysia. The main aims are to identify the gaps between the failed micro-enterprise owners (FMEOs) and existing micro-enterprise owners (MEOs) and the problems faced among FMEOs. The results reveal that the MEOs had strong motivations and better marketing approaches as compared to FMEOs. Furthermore, the FMEOs failed in the business ventures mainly due to lack of management, sales and marketing skills and poor competitive abilities to keep up with rivals.

Avoiding Pin Ball Routing Problem in Network Mobility Hand-Off Management

With the demand of mobility by users, wireless technologies have become the hotspot developing arena. Internet Engineering Task Force (IETF) working group has developed Mobile IP to support node mobility. The concept of node mobility indicates that in spite of the movement of the node, it is still connected to the internet and all the data transactions are preserved. It provides location-independent access to Internet. After the incorporation of host mobility, network mobility has undergone intense research. There are several intricacies faced in the real world implementation of network mobility significantly the problem of nested networks and their consequences. This article is concerned regarding a problem of nested network called pinball route problem and proposes a solution to eliminate the above problem. The proposed mechanism is implemented using NS2 simulation tool and it is found that the proposed mechanism efficiently reduces the overload caused by the pinball route problem.

Three Dimensional MEMS Supercapacitor Fabricated by DRIE on Silicon Substrate

Micro power sources are required to be used in autonomous microelectromechanical system (MEMS). In this paper,  we designed and fabricated a three dimensional (3D) MEMS supercapacitor, which is consisting of conformal silicon  dioxide/titanium/polypyrrole (PPy) layers on silicon substrate. At first, ''through-structure'' was fabricated on the silicon substrate by high-aspect-ratio deep reactive ion etching (DRIE) method, which enlarges the available surface area significantly. Then the SiO2/Ti/PPy layers grew sequentially on the ³through-structure´. Finally, the supercapacitor was investigated by electrochemical methods.

Generating Class-Based Test Cases for Interface Classes of Object-Oriented Black Box Frameworks

An application framework provides a reusable design and implementation for a family of software systems. Application developers extend the framework to build their particular applications using hooks. Hooks are the places identified to show how to use and customize the framework. Hooks define the Framework Interface Classes (FICs) and their possible specifications, which helps in building reusable test cases for the implementations of these classes. This paper introduces a novel technique called all paths-state to generate state-based test cases to test the FICs at class level. The technique is experimentally evaluated. The empirical evaluation shows that all paths-state technique produces test cases with a high degree of coverage for the specifications of the implemented FICs comparing to test cases generated using round-trip path and all-transition techniques.

Steady State Temperature Distribution of Cast-Resin Dry Type Transformer Based on New Thermal Model Using Finite Element Method

In this paper, a thermal model of cast- resin dry type transformer is proposed. The proposed thermal model is solved by finite element technique to get the temperature at any location of the transformer. The basic modes of heat transfer such as conduction; convection and radiation are used to get the steady state temperature distribution of the transformer. The predicted temperatures are compared with experimental results reported in this paper and it is found a good agreement between them. The effects of various parameters such as width of air duct, ambient temperature and emissivity of the outer surface were also studied.

On Some Signs of a Recurrent Climate Scenario Advent

Since atmosphere pressure field is an actual envoy of climatic signal the atmospheric Highs and Lows should be attributed to the key active focal points within the ocean-atmosphere interplay system. Here we were set a task to determine how the dynamics of those centres of action relates to the climate change both on regional and global scales. For this target the near-surface temperature and atmospheric pressure differences between the Icelandic Low and the Azores High were considered. The secular term of phase states of the system under consideration was found divided into three nonintersecting subsets. Each of that was put in consequence with one of three climatic scenarios related to the periods of 1905-1935 (relatively warm phase), 1940-1970 (cold phase) and 1980-2000 (warm phase).

Numerical Investigation of the Chilling of Food Products by Air-Mist Spray

Spray chilling using air-mist nozzles has received much attention in the food processing industry because of the benefits it has shown over forced air convection. These benefits include an increase in the heat transfer coefficient and a reduction in the water loss by the product during cooling. However, few studies have simulated the heat transfer and aerodynamics phenomena of the air-mist chilling process for optimal operating conditions. The study provides insight into the optimal conditions for spray impaction, heat transfer efficiency and control of surface flooding. A computational fluid dynamics model using a two-phase flow composed of water droplets injected with air is developed to simulate the air-mist chilling of food products. The model takes into consideration droplet-to-surface interaction, water-film accumulation and surface runoff. The results of this study lead to a better understanding of the heat transfer enhancement, water conservation, and to a clear direction for the optimal design of air-mist chilling systems that can be used in commercial applications in the food and meat processing industries.

Removal of Phenylurea Herbicides from Waters by using Chemical Oxidation Treatments

Four phenylurea herbicides (isoproturon, chlortoluron, diuron and linuron) were dissolved in different water matrices in order to study their chemical degradation by using UV radiation, ozone and some advanced oxidation processes (UV/H2O2, O3/H2O2, Fenton reagent and the photo- Fenton system). The waters used were: ultra-pure water, a commercial mineral water, a groundwater and a surface water taken from a reservoir. Elimination levels were established for each herbicide and for several global quality parameters, and a kinetic study was performed in order to determine basic kinetic parameters of each reaction between the target phenylureas and these oxidizing systems.

An Overall Approach to the Communication of Organizations in Conventional and Virtual Offices

Organizational communication is an administrative function crucial especially for executives in the implementation of organizational and administrative functions. Executives spend a significant part of their time on communicative activities. Doing his or her daily routine, arranging meeting schedules, speaking on the telephone, reading or replying to business correspondence, or fulfilling the control functions within the organization, an executive typically engages in communication processes. Efficient communication is the principal device for the adequate implementation of administrative and organizational activities. For this purpose, management needs to specify the kind of communication system to be set up and the kind of communication devices to be used. Communication is vital for any organization. In conventional offices, communication takes place within the hierarchical pyramid called the organizational structure, and is known as formal or informal communication. Formal communication is the type that works in specified structures within the organizational rules and towards the organizational goals. Informal communication, on the other hand, is the unofficial type taking place among staff as face-to-face or telephone interaction. Communication in virtual as well as conventional offices is essential for obtaining the right information in administrative activities and decision-making. Virtual communication technologies increase the efficiency of communication especially in virtual teams. Group communication is strengthened through an inter-group central channel. Further, ease of information transmission makes it possible to reach the information at the source, allowing efficient and correct decisions. Virtual offices can present as a whole the elements of information which conventional offices produce in different environments. At present, virtual work has become a reality with its pros and cons, and will probably spread very rapidly in coming years, in line with the growth in information technologies.

Lattice Monte Carlo Analyses of Thermal Diffusion in Laminar Flow

Lattice Monte Carlo methods are an excellent choice for the simulation of non-linear thermal diffusion problems. In this paper, and for the first time, Lattice Monte Carlo analysis is performed on thermal diffusion combined with convective heat transfer. Laminar flow of water modeled as an incompressible fluid inside a copper pipe with a constant surface temperature is considered. For the simulation of thermal conduction, the temperature dependence of the thermal conductivity of the water is accounted for. Using the novel Lattice Monte Carlo approach, temperature distributions and energy fluxes are obtained.

Theoretical Investigation of Carbazole-Based D-D-π-A Organic Dyes for Efficient Dye-Sensitized Solar Cell

In this paper, four carbazole-based D-D-π-A organic dyes code as CCT2A, CCT3A, CCT1PA and CCT2PA were reported. A series of these organic dyes containing identical donor and acceptor group but different π-system. The effect of replacing of thiophene by phenyl thiophene as π-system on the physical properties has been focused. The structural, energetic properties and absorption spectra were theoretically investigated by means of Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT). The results show that nonplanar conformation due to steric hindrance in donor part (cabazolecarbazole unit) of dye molecule can prevent unfavorable dye aggregation. By means of the TD-DFT method, the absorption spectra were calculated by B3LYP and BHandHLYP to study the affect of hybrid functional on the excitation energy (Eg). The results revealed the increasing of thiophene units not only resulted in decreasing of Eg, but also found the shifting of absorption spectra to higher wavelength. TD-DFT/BHandHLYP calculated results are more strongly agreed with the experimental data than B3LYP functions. Furthermore, the adsorptions of CCT2A and CCT3A on the TiO2 anatase (101) surface were carried out by mean of the chemical periodic calculation. The result exhibit the strong adsorption energy. The calculated results provide our new organic dyes can be effectively used as dye for Dye Sensitized Solar Cell (DSC).

Synthesis and Characterization of Silver/Polylactide Nanocomposites

Silver/polylactide nanocomposites (Ag/PLA-NCs) were synthesized via chemical reduction method in diphase solvent. Silver nitrate and sodium borohydride were used as a silver precursor and reducing agent in the polylactide (PLA). The properties of Ag/PLA-NCs were studied as a function of the weight percentages of silver nanoparticles (8, 16 and 32 wt% of Ag-NPs) relative to the weight of PLA. The Ag/PLA-NCs were characterized by Xray diffraction (XRD), transmission electron microscopy (TEM), electro-optical microscopy (EOM), UV-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FT-IR). XRD patterns confirmed that Ag-NPs crystallographic planes were face centered cubic (fcc) type. TEM images showed that mean diameters of Ag-NPs were 3.30, 3.80 and 4.80 nm. Electro-optical microscopy revealed excellent dispersion and interaction between Ag-NPs and PLA films. The generation of silver nanoparticles was confirmed from the UVvisible spectra. FT-IR spectra showed that there were no significant differences between PLA and Ag/PLA-NCs films. The synthesized Ag/PLA-NCs were stable in organic solution over a long period of time without sign of precipitation.

2D Human Motion Regeneration with Stick Figure Animation Using Accelerometers

This paper explores the opportunity of using tri-axial wireless accelerometers for supervised monitoring of sports movements. A motion analysis system for the upper extremities of lawn bowlers in particular is developed. Accelerometers are placed on parts of human body such as the chest to represent the shoulder movements, the back to capture the trunk motion, back of the hand, the wrist and one above the elbow, to capture arm movements. These sensors placement are carefully designed in order to avoid restricting bowler-s movements. Data is acquired from these sensors in soft-real time using virtual instrumentation; the acquired data is then conditioned and converted into required parameters for motion regeneration. A user interface was also created to facilitate in the acquisition of data, and broadcasting of commands to the wireless accelerometers. All motion regeneration in this paper deals with the motion of the human body segment in the X and Y direction, looking into the motion of the anterior/ posterior and lateral directions respectively.

Using Non-Linear Programming Techniques in Determination of the Most Probable Slip Surface in 3D Slopes

Among many different methods that are used for optimizing different engineering problems mathematical (numerical) optimization techniques are very important because they can easily be used and are consistent with most of engineering problems. Many studies and researches are done on stability analysis of three dimensional (3D) slopes and the relating probable slip surfaces and determination of factors of safety, but in most of them force equilibrium equations, as in simplified 2D methods, are considered only in two directions. In other words for decreasing mathematical calculations and also for simplifying purposes the force equilibrium equation in 3rd direction is omitted. This point is considered in just a few numbers of previous studies and most of them have only given a factor of safety and they haven-t made enough effort to find the most probable slip surface. In this study shapes of the slip surfaces are modeled, and safety factors are calculated considering the force equilibrium equations in all three directions, and also the moment equilibrium equation is satisfied in the slip direction, and using nonlinear programming techniques the shape of the most probable slip surface is determined. The model which is used in this study is a 3D model that is composed of three upper surfaces which can cover all defined and probable slip surfaces. In this research the meshing process is done in a way that all elements are prismatic with quadrilateral cross sections, and the safety factor is defined on this quadrilateral surface in the base of the element which is a part of the whole slip surface. The method that is used in this study to find the most probable slip surface is the non-linear programming method in which the objective function that must get optimized is the factor of safety that is a function of the soil properties and the coordinates of the nodes on the probable slip surface. The main reason for using non-linear programming method in this research is its quick convergence to the desired responses. The final results show a good compatibility with the previously used classical and 2D methods and also show a reasonable convergence speed.

Passive Flow Control in Twin Air-Intakes

Aircraft propulsion systems often use Y-shaped subsonic diffusing ducts as twin air-intakes to supply the ambient air into the engine compressor for thrust generation. Due to space constraint, the diffusers need to be curved, which causes severe flow non-uniformity at the engine face. The present study attempt to control flow in a mild-curved Y-duct diffuser using trapezoidalshaped vortex generators (VG) attached on either both the sidewalls or top and bottom walls of the diffuser at the inflexion plane. A commercial computational fluid dynamics (CFD) code is modified and is used to simulate the effects of SVG in flow of a Y-duct diffuser. A few experiments are conducted for CFD code validation, while the rest are done computationally. The best combination of Yduct diffuser is found with VG-2 arranged in co-rotating sequence and attached to both the sidewalls, which ensures highest static pressure recovery, lowest total pressure loss, minimum flow distortion and less flow separation in Y-duct diffuser. The decrease in VG height while attached to top and bottom walls further improves axial flow uniformity at the diffuser outlet by a great margin as compared to the bare duct.

Dead-Reckoning Error Calibration using Celling Looking Vision Camera

This paper suggests a calibration method to reduce errors occurring due to mobile robot sliding during location estimation using the Dead-reckoning. Due to sliding of the mobile robot caused between its wheels and the road surface while on free run, location estimation can be erroneous. Sliding especially occurs during cornering of mobile robot. Therefore, in order to reduce these frequent sliding errors in cornering, we calibrated the mobile robot-s heading values using a vision camera and templates of the ceiling.

Effect of Different pH on Canthaxanthin Degradation

In this research, natural canthaxanthin as one of the most important carotenoids was extracted from Dietzia natronolimnaea HS-1. The changes of canthaxanthin enriched in oilin- water emulsions with vegetable oil (5 mg/ 100 mL), Arabic gum (5 mg/100 mL), and potassium sorbate (0.5 g/100 mL) was investigated. The effects of different pH (3, 5 and 7), as well as, time treatment (3, 18 and 33 days) in the environmental temperature (24°C) on the degradation were studied by response surface methodology (RSM). The Hunter values (L*, a*, and b*) and the concentration of canthaxanthin (C, mg/L) illustrated more degradation of this pigment at low pHs (pH≤ 4) by passing the time (days≥10) with R² 97.00%, 91.31%, 97.60%, and 99.54% for C, L*, a*, and b* respectively. The predicted model were found to be significant (p

Localisation of Anatomical Soft Tissue Landmarks of the Head in CT Images

In this paper, algorithms for the automatic localisation of two anatomical soft tissue landmarks of the head the medial canthus (inner corner of the eye) and the tragus (a small, pointed, cartilaginous flap of the ear), in CT images are describet. These landmarks are to be used as a basis for an automated image-to-patient registration system we are developing. The landmarks are localised on a surface model extracted from CT images, based on surface curvature and a rule based system that incorporates prior knowledge of the landmark characteristics. The approach was tested on a dataset of near isotropic CT images of 95 patients. The position of the automatically localised landmarks was compared to the position of the manually localised landmarks. The average difference was 1.5 mm and 0.8 mm for the medial canthus and tragus, with a maximum difference of 4.5 mm and 2.6 mm respectively.The medial canthus and tragus can be automatically localised in CT images, with performance comparable to manual localisation

Corporate Social Responsibility in China Apparel Industry

China apparel industry, which is deeply embedded in the global production network (GPN), faces the dual pressures of social upgrading and economic upgrading. Based on the survey in Ningbo apparel cluster, the paper shows the state of corporate social responsibility (CSR) in China apparel industry is better than before. And the investigation indicates that the firms who practice CSR actively perform better both socially and economically than those who inactively. The research demonstrates that CSR can be an initial capital rather than cost, and “doing well by doing good" is also existed in labor intensive industry.

Response of Fully Backed Sandwich Beams to Low Velocity Transverse Impact

This paper describes analysis of low velocity transverse impact on fully backed sandwich beams with composite faces from Eglass/epoxy and cores from Polyurethane or PVC. Indentation on sandwich beams has been analyzed with the existing theories and modeled with the FE code ABAQUS, also loadings have been done experimentally to verify theoretical results. Impact on fully backed has been modeled in two cases of impactor energy with SDOF model (single-degree-of-freedom) and indentation stiffness: lower energy for elastic indentation of sandwich beams and higher energy for plastic area in indentation. Impacts have been modeled by ABAQUS. Impact results can describe response of beam in terms of core and faces thicknesses, core material, indentor energy and energy absorbed. The foam core is modeled using the crushable foam material model and response of the foam core is experimentally characterized in uniaxial compression with higher velocity loading to define quasi impact behaviour.