Lattice Monte Carlo Analyses of Thermal Diffusion in Laminar Flow

Lattice Monte Carlo methods are an excellent choice for the simulation of non-linear thermal diffusion problems. In this paper, and for the first time, Lattice Monte Carlo analysis is performed on thermal diffusion combined with convective heat transfer. Laminar flow of water modeled as an incompressible fluid inside a copper pipe with a constant surface temperature is considered. For the simulation of thermal conduction, the temperature dependence of the thermal conductivity of the water is accounted for. Using the novel Lattice Monte Carlo approach, temperature distributions and energy fluxes are obtained.




References:
[1] G. E. Murch, "Simulation of Diffusion Kinetics with the Monte Carlo
Method" in Diffusion in Crystalline Solids, G. E. Murch, A.S. Nowick,
Eds, Orlando: Academic Press, 1984, pp. 379 - 427.
[2] Y. Mishin, I. V. Belova, and G. E. Murch, "Atomistic Modelling of
Diffusion in the TiAl Compound" Defect Diffus. Forum, vol. 237-240,
pp. 271 - 276, 2005.
[3] I. V. Belova and G. E. Murch, "Bridging Different Length and Time
Scales in Diffusion Problems Using a Lattice Monte Carlo Methods"
Sol. St. Phen., vol. 129, pp. 1 - 10, 2007.
[4] I. V. Belova, G. E. Murch, N. Muthubandara, and A. Öchsner, "Analysis
of Oxygen Segregation at Metal-Oxide Interfaces Using a New Lattice
Monte Carlo Method" Sol. St. Phen., vol. 129, pp. 111 - 118, 2007.
[5] I. V. Belova, G. E. Murch, T. Fiedler, and A. Öchsner, "Lattice-based
walks and the Monte Carlo method for addressing mass, thermal and
elasticity problems" Defect Diffus. Forum, vol. 283-286, pp. 13 - 23,
2009.
[6] I. V. Belova, G. E. Murch, T. Fiedler, and A. Öchsner, Diffusion
Fundamentals, vol. 4, pp. 15.1-15.23, 2007. On-line.
[7] T. Fiedler, A. Öchsner, N. Muthubandara, I. V. Belova, G. E. Murch,
"Calculation of the Effective Thermal Conductivity in Composites Using
Finite Element and Monte Carlo Methods" Mater. Sci. Forum, vol. 553,
pp. 51 - 56, 2007.
[8] T. Fiedler, A. Öchsner, I. V. Belova, and G. E. Murch, "Calculations of
the effective thermal conductivity in a model of syntactic metallic
hollow sphere structures using a Lattice Monte Carlo method" Defect
Diffus. Forum, vol. 273-276, pp. 216 - 221, 2008.
[9] I. V. Belova and G. E. Murch, "Thermal Properties of Composite
materials and Porous Media: Lattice-Based Monte Carlo Approaches"
in Cellular and Porous Materials. Thermal Properties, Simulation and
Prediction, A. Öchsner, G. E. Murch, J. S. de Lemos, Eds Weinheim:
Wiley VCH, 2008, pp. 73 - 95.
[10] T. Fiedler, I. V. Belova, A. Öchsner, and G. E. Murch, "Non-linear
calculations of transient thermal conduction in composite materials"
Comp. Mater. Sci., vol. 45, pp. 434 - 438, 2009.
[11] T. Fiedler, I. V. Belova, G. E. Murch, "A Lattice Monte Carlo analysis
on coupled reaction and mass diffusion" Comp. Mater. Sci., accepted for
publication.
[12] C. O. Bennett and J. E. Myers, Momentum, Heat, and Mass Transfer,
New York: McGraw-Hill Book Company, 1982.
[13] C. Y. Ho, R. W. Powell, and P. E. Liley, "Thermal Conductivity of the
Elements" J. Phys. Chem. Ref. Data, vol. 1, pp. 279-442, 1972.
[14] G. K. White and S.J. Collocott, "Heat Capacity of Reference Materials"
J. Phys. Chem. Ref. Data, vol. 13, no 4, pp. 1251-1257, 1984.
[15] F. L. Levy, "The thermal conductivity of commercial brines and
seawater in the freezing range", Int. J. Refrig., vol. 5, pp. 155-159, 1982.
[16] D. R. Lide, CRC Handbook of Chemistry and Physics. Boca Raton:
CRC Press, 1998.