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Abstract—Lattice Monte Carlo methods are an excellent 

choice for the simulation of non-linear thermal diffusion 
problems. In this paper, and for the first time, Lattice Monte 
Carlo analysis is performed on thermal diffusion combined 
with convective heat transfer. Laminar flow of water modeled 
as an incompressible fluid inside a copper pipe with a constant 
surface temperature is considered. For the simulation of 
thermal conduction, the temperature dependence of the 
thermal conductivity of the water is accounted for. Using the 
novel Lattice Monte Carlo approach, temperature distributions 
and energy fluxes are obtained. 
 

Keywords—Coupled Analysis, Laminar Flow, Lattice Monte 
Carlo, Thermal Diffusion 

I. INTRODUCTION 
HE Monte Carlo method was first developed at Los 
Alamos during the WWII Manhattan Project for the 

purposes of modeling neutron trajectories during fission. 
Since that time, the Monte Carlo method has undergone 
enormous developments and has enjoyed numerous 
applications in virtually every area of science and engineering. 
Intrinsically a computationally very demanding method, the 
Monte Carlo method has naturally become far more popular as 
computers have become faster, less expensive and more 
accessible. The Monte Carlo method has been a popular 
method to address both mass and thermal diffusion problems 
in materials. For mass diffusion, the Monte Carlo method has 
been used for many years for addressing atomistic problems in 
crystalline solids (in such problems it is now usually called the 
Kinetic Monte Carlo (KMC) method; see [1] for an early 
review and [2] for a typical recent KMC calculation. Recently, 
a wholly different type of Monte Carlo method has been 
developed for addressing multi-scale phenomenological 
diffusion problems (where it is called the Lattice Monte Carlo 
(LMC) method [3,4]). In the LMC method, the 
phenomenological diffusion problem is mapped onto a simple 
cubic (usually) lattice which is then explored by virtual 
particles. Depending on the physics of the problem 
considered, the virtual particles correspond to fixed amounts 
of matter (mass diffusion analysis), thermal energy (thermal 
diffusion analysis) or even elastic deformation energy (elastic 
analysis) [5].  
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From another perspective, the LMC method is basically a 
finite-difference method that is embedded in a quasi-
simulation of the physical process. The LMC method has 
shown itself to be very capable for solving complex 
phenomenological mass and thermal diffusion problems. For 
example, it has been used to calculate effective mass 
diffusivities in inhomogeneous materials where the diffusivity 
may depend on position [6] and to calculate concentration 
profiles where the diffusivity depends on position [3]. It has 
also been used to address steady state and transient thermal 
problems in multi-phase materials. Analogous to effective 
mass diffusivities, effective thermal conductivities can be 
obtained for composites [7,8] using LMC steady-state 
simulation. Furthermore, transient thermal behaviour can be 
addressed where thermal conductivities are functions of 
position [9] and temperature [10]. In a recent publication, the 
LMC method was also used to address diffusion coupled with 
chemical reaction [11]. 

The numerical LMC is an alternative to the well established 
finite difference and finite element methods and therefore 
must be able to compete with them. A major advantage of the 
LMC method is excellent memory efficiency that allows 
calculations with large models, e.g. based on computed 
tomography analysis. In addition, the LMC method is 
numerically very stable and thus is an excellent choice for 
highly non-linear (i.e. temperature dependent material 
properties) analysis. 

In this paper, and for the first time, the Lattice Monte Carlo 
method is used in the analysis of combined thermal 
conduction and convection. In the compass of this preliminary 
research, the convection term is based on a velocity field 
obtained by an analytical solution. However, future 
development aims towards a fully coupled thermal and fluid 
dynamic analysis. 

II. LATTICE MONTE CARLO METHOD 
In the LMC method, geometries are discretized as lattice 

models. In principle, any topology of lattice nodes can be 
chosen, for reasons of simplicity normally a primitive cubic 
arrangement is selected. In this study, only two-dimensional 
models are addressed, however, the transition to the three-
dimensional case can be easily achieved by adding an 
additional jump direction and layers of nodes. Each lattice 
node is assigned a nodal volume s3 where s is the minimum 
distance between two nodes. For thermal simulations, nodes 
are assigned material properties (i.e. thermal conductivity λ, 
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specific heat C and density ρ), a thermal energy content EN 
and a velocity vector v. 

A. Thermal Diffusion 
In the Lattice Monte Carlo method, thermal energy 

transport by conduction is considered as a diffusion problem. 
As an example frequently found experimentally, we will focus 
on the situation where the temperature at the surface or source 
is held constant at TS. The number of virtual thermal particles 
in the source plane is NS. The amount of thermal energy Ep 
corresponding to a virtual thermal energy particle is then 
given by the relation: 

S

3
Sp

1E
N

CsT ⋅⋅⋅⋅= ρ  ,     (1) 

where s is the distance between two neighbouring lattice sites, 
C the specific heat capacity and ρ the density of the material.  

We organize the random walks of the particles in such a 
way that they are now directed by two parameters: the jump 
probability pj (the scaled thermal conductivity) and the 
selection probability ps (the scaled inverse product ρi · Ci). We 
treat the selection probability as an ‘amount of thermal inertia’ 
assigned to a virtual thermal energy particle in the particular 
phase: i.e. the higher the specific heat in the phase the slower 
the virtual thermal particle. Both jump and selection 
probabilities depend on the material parameters of the phase i. 
The jump and selection probabilities pj and ps are defined to 
have values between zero (the event never occurs) and unity 
(the event always occurs). Then the jump probability in a 
phase must be scaled with respect to the highest thermal 
conductivity so that: 

maxj, /λλiip =          (2) 

and the selection probability ps,i is scaled with respect to the 
lowest value of the product ρi · Ci: 
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According to Eq. (3), materials with a high specific heat 
and density possess a low selection probability. Different 
selection probabilities between sites from different material 
regions results in the modified Eq. (1) definition of the energy 
Ep corresponding now to a virtual thermal particle: 

n
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3
cp

1)(E
N

CsT p ⋅⋅⋅⋅= ρ .    (4) 

Let us assume a multi-phase material where phase 1 has a 
lower selection probability than phase 2 i.e.: ps,1 < ps,2. The 
overall probability of a jump of a probing thermal particle in 
phase 1 is then equal to ps,1 • pj,1 and similarly for a particle in 
phase 2. (This value is, in fact, a scaled thermal diffusivity.) 
The increased number of unsuccessful jump attempts in phase 
1 simulates an accumulation of virtual thermal particles in that 
phase. It should be mentioned here that the selection of ps and 
jump probabilities pj of virtual thermal particles inside the 
source plane (x = 0) are equal to unity. 

At the beginning of each time-step Δt, a particle is 

randomly selected. Next, a random number between 0 and 1 is 
generated and compared to the selection probability 
corresponding to the material parameters at that lattice site. If 
this random number is higher than the selection probability, 
the attempt is unsuccessful; the LMC time is increased and 
another particle is randomly chosen. Otherwise, a jump 
direction for the particle is randomly chosen and, depending 
on the phase(s) of the starting and target lattice sites, the jump 
probability pj is now determined. In the case that the jump 
attempt is successful, the coordinates of the particle are 
updated before the LMC time is increased and a new particle 
is selected. The incremental increase to the Monte Carlo time 
tMC depends on the total number Ntot of virtual thermal 
particles in the system. At specified times tMC the positions of 
all of the particles are recorded to derive temperature profiles. 
In order to obtain temperature profiles, the thermal particles 
are translated into site temperatures T according to: 

minp,
3

p
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E

ii Cs
n
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⋅
=

ρ
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where n is the number of virtual thermal particles currently 
located at the site.  

Next, the Monte Carlo time tMC needs to be converted into 
real time t. To do this, we will use a standard parametric 
analysis approach. Consider the Heat Equation in its 
dimensionless form: 

)(div
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*
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t

td
dT

∇=
′

κ
,      (6) 

where x* is a characteristic length for which we will use the 
jump distance s: x* = s, t* is a characteristic time that is most 
naturally a jump attempt per virtual thermal particle and t* 
should be determined in real time units; t' and x' are the 
dimensionless time and space coordinates. κt*/(x*)2 is the 
dimensionless parameter of the thermal diffusion processes. It 
is obvious that the value of this parameter used in LMC 
simulations should be equal to its value in real units.  

For the case of multiphase material, it is clear that we need 
to consider this correspondence only in one phase, provided 
that the other phases are modelled correctly. Let us choose 
phase i where the thermal conductivity is the highest λmax 
Then the LMC value of the thermal diffusion parameter is: 
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Equating this value to the thermal diffusion parameter in 
the real units we have that: 
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Solving the equation between the leftmost term and the 
rightmost term we soon arrive at: 

max
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6
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λ
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Therefore, for the total time in real units we have the 
following connection to the LMC simulation time as follows: 
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B. Bulk Motion 
The velocity field of the laminar flow is obtained using the 

Hagen-Poiseuille equation [12]. This equation is valid for  
laminar flow of a viscous and incompressible fluid passing 
through a cylindrical pipe where the inner diameter R is small 
in comparison the length L of the pipe. The velocity field is 
then given according to:  

)(
4
1 22 rR

x
Pv −

Δ
−=

μ
,     (11) 

where μ is the kinematic viscosity, x is the distance in flow 
direction and r is the distance from the center of the pipe. The 
pressure drop ΔP can be calculated using the volumetric flow 
rate Q: 

4r
QxP

⋅
⋅⋅8

=Δ
π
μ

       (12) 

Combining Eqs. (11) and (12) we obtain the velocity field 
as a function of the volumetric flow rate and the geometric 
dimensions of the pipe: 

)(2 22
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r
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.    (13) 

For a known velocity field, bulk motion can be readily 
implemented in the LMC simulation: after each time step Δt 
(i.e. a jump attempt in the thermal diffusion simulation) the 
displaced volume ΔV is evaluated for all nodal volumes:  

tsvV Δ⋅⋅=Δ 2 .      (14) 
If we assume that the thermal energy EN is distributed 

homogeneously inside the nodal volumes, the transferred 
energy ΔEbulk can be calculated: 

s
trxvE

s
VEE n

Δ
⋅⋅=

Δ
⋅=Δ ),(N3bulk    (15) 

Based on the direction of the velocity vector, the target 
node is identified and the nodal energies are updated. 

C. Numerical Model 
A two-dimensional model of a short section of a cylindrical 

pipe is considered (cf. Fig. 1). The inner radius of the pipe is 
R = 0.25 cm, the thickness is t = 0.1 cm and the length of the 
investigated section is L = 2 cm. The temperature at the outer 
pipe surface is constant Ts = 550 K. The initial temperature of 
fluid and copper as well as the constant temperature of fluid 
entering the system is 300 K. The effective thermal 
conductivity, density and specific heat of the copper (UNS 
C10100) pipe are λP = 385.8 W/(m K), ρP = 8936.8 kg/m3 [13] 
and CP = 383.6 J/(kg K) [14], respectively. The corresponding 
material parameters of the fluid (water) are λF = 0.562-
0.001967·T·(1+0.00338·T) W/(m K), ρF = 1005 kg/m3 [15] 
and CF = 4181.9 J/(kg K) [16]. A fully developed velocity 
field according to Eq. (13) is presumed.  

 
Fig. 1 Numerical model 

III. RESULTS OF THE NUMERICAL SIMULATION 
Figure 2 shows temperature profiles obtained by the 

numerical simulation at the times t = 1 s, 3 s and 7.5 s for the 
volumetric flow rate Q = 5 10-8 m3 s-1. Water at T = 300 K 
enters the system at the right opening of the pipe. Due to its 
high thermal conductivity, the copper pipe, initially also at 
300 K, heats rapidly to its constant surface temperature TS = 
550 K and thermal energy is then transferred into the passing 
liquid. At t = 7.5 s, a constant temperature profile (steady 
state) is reached. 
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Fig. 2 Temperature distributions 
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Thermodynamic analysis of the numerical model reveals 
energy transfers at three locations of the system boundary: (i) 
energy transfer by heat E&  to maintain the constant 
temperature boundary condition TS at the pipe surface, (ii) 
energy transfer accompanying mass transfer im&  of fluid 
entering the pipe section and (iii) energy transfer 
accompanying mass transfer em&  of fluid leaving the pipe 
section. For an incompressible substance and a one-inlet one-
exit system the mass rate balance simplifies to: 

mmm ei &&& ==         (16) 
Accordingly, the energy rate balance of the system can be 
written as: 

)(
d

d
ei uumE

t
U

−⋅+= && ,     (17) 

where U is the internal system energy, ui the average specific 
internal energy of the fluid at the inlet and ue the average 
specific internal energy of the fluid at the exit. Steady state of 
the coupled conduction - convection problem is reached when 
all system properties become constant. Figure 3 shows the 
energy U contained inside the system plotted versus time. It 
can be seen that the criterion is only met for the highest 
volumetric flow rate Q = 5 10-8 m3 s-1 and t > 7.5 s. 
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Fig. 3 System energy plotted versus time 

 
Next to temperature profiles, energy fluxes at the system 

boundaries are of special interest. Figure 4 shows the total 
amount of energy ∫= tEE d&  conducted to the surface of the 

copper pipe from the surroundings and the energy increase of 
the water leaving the pipe given by ∫ ⋅−⋅ tuum ei d)(& . It can 

be observed that both values increase for higher volumetric 
flow rates. It should be mentioned here that the difference 
between the two integrals is equal to the system energy U 
shown in Fig. 3. 
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Fig. 4 Transferred energies plotted versus time 

 

IV. CONCLUSIONS AND OUTLOOK 

In this paper, and for the first time, Lattice Monte Carlo 
analysis was used towards the combined analysis of thermal 
conduction and convection. Laminar flow inside a copper tube 
was simulated and temperature distributions as well as energy 
fluxes were obtained. In the compass of the present 
preliminary research, the velocity field was obtained by an 
analytical solution and prescribed as a boundary condition. A 
more realistic simulation is obtained by accounting for the 
dependence of the velocity field on local temperature, 
pressure and density (in the case of a compressible fluid) 
variations. To this end, a suitable numerical method will be 
identified in the future and included in the current LMC 
analysis. The velocity field can then be calculated and updated 
after each time increment resulting in a highly accurate 
numerical simulation technique.  
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