Early-Age Structural and Thermal Performance of GGBS Concrete

A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I cement replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.

An Investigation on Fresh and Hardened Properties of Concrete while Using Polyethylene Terephthalate (PET) as Aggregate

This study investigates the suitability of using plastic, such as polyethylene terephthalate (PET), as a partial replacement of natural coarse and fine aggregates (for example, brick chips and natural sand) to produce lightweight concrete for load bearing structural members. The plastic coarse aggregate (PCA) and plastic fine aggregate (PFA) were produced from melted polyethylene terephthalate (PET) bottles. Tests were conducted using three different water–cement (w/c) ratios, such as 0.42, 0.48, and 0.57, where PCA and PFA were used as 50% replacement of coarse and fine aggregate respectively. Fresh and hardened properties of concrete have been compared for natural aggregate concrete (NAC), PCA concrete (PCC) and PFA concrete (PFC). The compressive strength of concrete at 28 days varied with the water–cement ratio for both the PCC and PFC. Between PCC and PFC, PFA concrete showed the highest compressive strength (23.7 MPa) at 0.42 w/c ratio and also the lowest compressive strength (13.7 MPa) at 0.57 w/c ratio. Significant reduction in concrete density was mostly observed for PCC samples, ranging between 1977–1924 kg/m³. With the increase in water–cement ratio PCC achieved higher workability compare to both NAC and PFC. It was found that both the PCA and PFA contained concrete achieved the required compressive strength to be used for structural purpose as partial replacement of the natural aggregate; but to obtain the desired lower density as lightweight concrete the PCA is most suited.

Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks

This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of singleparameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.

Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity

In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.

Morphological Interaction of Porcine Oocyte and Cumulus Cells Study on in vitro Oocyte Maturation Using Electron Microscopy

Morphological interaction of porcine cumulus-oocyte complexes (pCOCs) was investigated on in vitro condition using electron microscope (SEM and TEM). The totals of 1,923 oocytes were round in shape, surrounded by Zona pellucida with layer of cumulus cells ranging between 59.29-202.14 μm in size. They were classified into intact-, multi-, partial cumulus cell layer oocyte, and completely denuded oocyte, at the percentage composition of 22.80% 32.70%, 18.60%, and 25.90 % respectively. The pCOCs classified as intact- and multi cumulus cell layer oocytes were further culturing at 37°C with 5% CO2, 95% air atmosphere and high humidity for 44 h in M199 with Earle’s salts supplemented with 10% HTFCS, 2.2 mg/mL NaHCO3, 1 M Hepes, 0.25 mM pyruvate, 15 μg/mL porcine follicle-stimulating hormone, 1 μg/mL LH, 1μg/mL estradiol with ethanol, and 50 μg/mL gentamycin sulfate. On electron microscope study, cumulus cells were found to stick their processes to secrete substance from the sac-shape end into Zona pellucida of the oocyte and also communicated with the neighboring cells through their microvilli on the beginning of incubation period. It is believed that the cumulus cells communicate with the oocyte by inserting the microvilli through this gap and embedded in the oocyte cytoplasm before secreting substance, through the sac-shape end of the microvilli, to inhibit primary oocyte development at the prophase I. Morphological changes of the complexes were observed after culturing for 24-44 h. One hundred percentages of the cumulus layers were expanded and cumulus cells were peeling off from the oocyte surface. In addition, the round-shape cumulus cells transformed themselves into either an elongate shape or a columnar shape, and no communication between cumulus neighboring cells. After 44 h of incubation time, diameter of oocytes surrounded by cumulus cells was larger than 0 h incubation. The effect of hormones in culture medium is exerted by their receptors present in porcine oocyte. It is likely that all morphological changes of the complexes after hormone treatment were to allow maturation of the oocyte. This study demonstrated that the association of hormones in M199 could promote porcine follicle activation in 44 h in vitro condition. This culture system should be useful for studying the regulation of early follicular growth and development, especially because these follicles represent a large source of oocytes that could be used in vitro for cell technology.

Botswana and Nation-Building Theory

This paper argues nation-building theories that prioritize democratic governance best explain the successful postindependence development of Botswana. Three main competing schools of thought exist regarding the sequencing of policies that should occur to re-build weakened or failed states. The first posits that economic development should receive foremost attention, while democratization and a binding sense of nationalism can wait. A second group of experts identified constructing a sense of nationalism among a populace is necessary first, so that the state receives popular legitimacy and obedience that are prerequisites for development. Botswana, though, transitioned into a multi-party democracy and prosperous open economy due to the utilization of traditional democratic structures, enlightened and accountable leadership, and an educated technocratic civil service. With these political foundations already in place when the discovery of diamonds occurred, the resulting revenues were spent wisely on projects that grew the economy, improved basic living standards, and attracted foreign investment. Thus democratization preceded, and therefore provided an accountable basis for, economic development that might otherwise have been squandered by greedy and isolated elites to the detriment of the greater population. Botswana was one of the poorest nations in the world at the time of its independence in 1966, with little infrastructure, a dependence on apartheid South Africa for trade, and a largely subsistence economy. Over the next thirty years, though, its economy grew the fastest of any nation in the world. The transparent and judicious use of diamond returns is only a partial explanation, as the government also pursued economic diversification, mass education, and rural development in response to public needs. As nation-building has become a project undertaken by nations and multilateral agencies such as the United Nations and the North Atlantic Treaty Organization, Botswana may provide best practices that others should follow in attempting to reconstruct economically and politically unstable states.

The Effects of Logistical Centers Realization on Society and Economy

Presently, it is necessary to ensure the sustainable development of passenger and freight transport. Increasing performance of road freight has had a negative impact to environment and society. It is therefore necessary to increase the competitiveness of intermodal transport, which is more environmentally friendly. The study describes the effectiveness of logistical centers realization for companies and society and research how the partial internalization of external costs reflected in the efficient use of these centers and increase the competitiveness of intermodal transport to road freight. In our research, we use the method of comparative analysis and market research to describe the advantages of logistic centers for their users as well as for society as a whole. Method normal costing is used for calculation infrastructure and total costs, method of conversion costing for determine the external costs. We modelled total society costs for road freight transport and inter modal transport chain (we assumed that most of the traffic is carried by rail) with different loading schemes for condition in the Slovak Republic. Our research has shown that higher utilization of inter modal transport chain do good not only for society, but for companies providing freight services too. Increase in use of inter modal transport chain can bring many benefits to society that do not bring direct immediate financial return. They often bring the multiplier effects, such as greater use of environmentally friendly transport mode and reduce the total society costs.

Prospective Use of Rice Husk Ash to Produce Concrete in India

In this paper, the author studied the possibilities of using Rice Husk Ash (RHA) available in India; to produce concrete. Experiments conducted with RHA obtained from West Bengal, India; to replace cement partially to produce concrete of grade M10, M15, M20, M25 and M30. The concrete produced in the laboratory by replacing cement by 5%, 10%, 15%, 20%, 25% and 30% RHA. Compressive strength tests carried out to determine the strength of concrete. Cost analysis and comparison done to show the cost effectiveness of RHA Concrete. Traditional uses of Rice Husk in India pointed out and the advantages of using RHA in making concrete highlighted. Suggestion provided regarding prospective application of RHA concrete in India; which in turn will definitely reduce the cost of concrete and environmental friendly due to utilization of waste and replacement of Cement.

Recurring as a Means of Partial Strength Recovery of Concrete Subjected to Elevated Temperatures

Concrete is found to undergo degradation when subjected to elevated temperatures and loose substantial amount of its strength. The loss of strength in concrete is mainly attributed to decomposition of C-S-H and release of physically and chemically bound water, which begins when the exposure temperature exceeds 100°C. When such a concrete comes in contact with moisture, the cement paste is found rehydrate and considerable amount of strength lost is found to recover. This paper presents results of an experimental program carried out to investigate the effect of recuring on strength gain of OPC concrete specimens subjected to elevated temperatures from 200°C to 800°C, which were subjected to retention time of two hours and four hours at the designated temperature. Strength recoveries for concrete subjected to 7 designated elevated temperatures are compared. It is found that the efficacy of recuring as a measure of strength recovery reduces with increase in exposure temperature.

Vehicle Routing Problem with Mixed Fleet of Conventional and Heterogenous Electric Vehicles and Time Dependent Charging Costs

In this paper, we consider the vehicle routing problem with mixed fleet of conventional and heterogenous electric vehicles and time dependent charging costs, denoted VRP-HFCC, in which a set of geographically scattered customers have to be served by a mixed fleet of vehicles composed of a heterogenous fleet of Electric Vehicles (EVs), having different battery capacities and operating costs, and Conventional Vehicles (CVs). We include the possibility of charging EVs in the available charging stations during the routes in order to serve all customers. Each charging station offers charging service with a known technology of chargers and time dependent charging costs. Charging stations are also subject to operating time windows constraints. EVs are not necessarily compatible with all available charging technologies and a partial charging is allowed. Intermittent charging at the depot is also allowed provided that constraints related to the electricity grid are satisfied. The objective is to minimize the number of employed vehicles and then minimize the total travel and charging costs. In this study, we present a Mixed Integer Programming Model and develop a Charging Routing Heuristic and a Local Search Heuristic based on the Inject-Eject routine with different insertion methods. All heuristics are tested on real data instances.

The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme

This paper introduces an original method of parametric optimization of the structure for multimodal decisionlevel fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.

The Use of Palm Kernel Shell and Ash for Concrete Production

This work reports the potential of using Palm Kernel (PK) ash and shell as a partial substitute for Portland Cement (PC) and coarse aggregate in the development of mortar and concrete. PK ash and shell are agro-waste materials from palm oil mills, the disposal of PK ash and shell is an environmental problem of concern. The PK ash has pozzolanic properties that enables it as a partial replacement for cement and also plays an important role in the strength and durability of concrete, its use in concrete will alleviate the increasing challenges of scarcity and high cost of cement. In order to investigate the PC replacement potential of PK ash, three types of PK ash were produced at varying temperature (350-750C) and they were used to replace up to 50% PC. The PK shell was used to replace up to 100% coarse aggregate in order to study its aggregate replacement potential. The testing programme included material characterisation, the determination of compressive strength, tensile splitting strength and chemical durability in aggressive sulfatebearing exposure conditions. The 90 day compressive results showed a significant strength gain (up to 26.2 N/mm2). The Portland cement and conventional coarse aggregate has significantly higher influence in the strength gain compared to the equivalent PK ash and PK shell. The chemical durability results demonstrated that after a prolonged period of exposure, significant strength losses in all the concretes were observed. This phenomenon is explained, due to lower change in concrete morphology and inhibition of reaction species and the final disruption of the aggregate cement paste matrix.

Effect of Incentives on Knowledge Sharing and Learning – Evidence from the Indian IT Sector

The organizations in the knowledge economy era have recognized the importance of building knowledge assets for sustainable growth and development. In comparison to other industries, Information Technology (IT) enterprises, holds an edge in developing an effective Knowledge Management (KM) programmethanks to their in-house technological abilities. This paper tries to study the various knowledge based incentive programmes and its effect on Knowledge Sharing and Learning in the context of the Indian IT sector. A conceptual model is developed linking KM Incentives, Knowledge Sharing and Learning. A questionnaire study is conducted to collect primary data from the knowledge workers of the IT organizations located in India. The data was analysed using Structural Equation Modeling using Partial Least Square method. The results show a strong influence of knowledge management incentives on knowledge sharing and an indirect influence on learning.

CFD Analysis of Multi-Phase Reacting Transport Phenomena in Discharge Process of Non-Aqueous Lithium-Air Battery

A computational fluid dynamics (CFD) model is developed for rechargeable non-aqueous electrolyte lithium-air batteries with a partial opening for oxygen supply to the cathode. Multi-phase transport phenomena occurred in the battery are considered, including dissolved lithium ions and oxygen gas in the liquid electrolyte, solid-phase electron transfer in the porous functional materials and liquid-phase charge transport in the electrolyte. These transport processes are coupled with the electrochemical reactions at the active surfaces, and effects of discharge reaction-generated solid Li2O2 on the transport properties and the electrochemical reaction rate are evaluated and implemented in the model. The predicted results are discussed and analyzed in terms of the spatial and transient distribution of various parameters, such as local oxygen concentration, reaction rate, variable solid Li2O2 volume fraction and porosity, as well as the effective diffusion coefficients. It is found that the effect of the solid Li2O2 product deposited at the solid active surfaces is significant on the transport phenomena and the overall battery performance.

Physical and Mechanical Performance of Mortars with Ashes from Straw and Bagasse Sugarcane

The objective of this study was to identify the optimal level of partial replacement of Portland cement by the ashes originating from burning straw and bagasse from sugar cane (ASB). Order to this end, were made five series of flat plates and cylindrical bodies: control and others with the partial replacement in 20, 30, 40 and 50% of ASB in relation to the mass of the Ordinary Portland cement, and conducted a mechanical testing of simple axial compression (cylindrical bodies) and the four-point bending (flat plates) and determined water absorption (WA), bulk density (BD) and apparent void volume (AVV) on both types of specimens. Based on the data obtained, it may be noted that the control treatment containing only Portland cement, obtained the best results. However, the cylindrical bodies with 20% ashes showed better results compared to the other treatments. And in the formulations plates, the treatment which showed the best results was 30% cement replacement by ashes.

Evaluation of the Laser and Partial Vibration Stimulation on Osteoporosis

The aim of this study is to evaluate the effects of the laser and partial vibration stimulation on the mice tibia with morphological characteristics. Twenty female C57BL/6 mice (12 weeks old) were used for the experiment. The study was carried out on four groups of animals each consisting of five mice. Four groups of mice were ovariectomized. Animals were scanned at 0 and 2 weeks after ovariectomy by using micro computed tomography to estimate morphological characteristics of tibial trabecular bone. Morphological analysis showed that structural parameters of multi-stimuli group appear significantly better phase in BV/TV, BS/BV, Tb.Th, Tb.N, Tb.Sp, and Tb.pf than single stimulation groups. However, single stimulation groups didn’t show significant effect on tibia with Sham group. This study suggests that multi-stimuli may restrain the change as the degenerate phase on osteoporosis in the mice tibia.

Wetting Properties of Silver Based Alloys

The temperature dependence of wettability (wetting angle, Θ (T)) for Ag-based melts on graphite and Al2O3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygenalloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al2O3 substrates. As a consequence, Θ(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θ(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail.

Seismic Performance of Reinforced Concrete Frames Infilled by Masonry Walls with Different Heights

This study carried out comparative seismic performance of reinforced concrete frames infilled by masonry walls with different heights. Partial and fully infilled reinforced concrete frames were modeled for the research objectives and the analysis model for a bare reinforced concrete frame was also established for comparison. Non–linear static analyses for the studied frames were performed to investigate their structural behavior under extreme seismic loads and to find out their collapse mechanism. It was observed from analysis results that the strengths of the partial infilled reinforced concrete frames are increased and their ductilities are reduced, as infilled masonry walls are higher. Especially, reinforced concrete frames with higher partial infilled masonry walls would experience shear failures. Non–linear dynamic analyses using 10 earthquake records show that the bare and fully infilled reinforced concrete frame present stable collapse mechanism while the reinforced concrete frames with partially infilled masonry walls collapse in more brittle manner due to short-column effects.

Dynamic Risk Identification Using Fuzzy Failure Mode Effect Analysis in Fabric Process Industries: A Research Article as Management Perspective

In and around Erode District, it is estimated that more than 1250 chemical and allied textile processing fabric industries are affected, partially closed and shut off for various reasons such as poor management, poor supplier performance, lack of planning for productivity, fluctuation of output, poor investment, waste analysis, labor problems, capital/labor ratio, accumulation of stocks, poor maintenance of resources, deficiencies in the quality of fabric, low capacity utilization, age of plant and equipment, high investment and input but low throughput, poor research and development, lack of energy, workers’ fear of loss of jobs, work force mix and work ethic. The main objective of this work is to analyze the existing conditions in textile fabric sector, validate the break even of Total Productivity (TP), analyze, design and implement fuzzy sets and mathematical programming for improvement of productivity and quality dimensions in the fabric processing industry. It needs to be compatible with the reality of textile and fabric processing industries. The highly risk events from productivity and quality dimension were found by fuzzy systems and results are wrapped up among the textile fabric processing industry.

Electric Field Investigation in MV PILC Cables with Void Defect

Worldwide, most PILC MV underground cables in use are approaching the end of their design life; hence, failures are likely to increase. This paper studies the electric field and potential distributions within the PILC insulted cable containing common void-defect. The finite element model of the performance of the belted PILC MV underground cable is presented. The variation of the electric field stress within the cable using the Finite Element Method (FEM) is concentrated. The effects of the void-defect within the insulation are given. Outcomes will lead to deeper understanding of the modeling of Paper Insulated Lead Covered (PILC) and electric field response of belted PILC insulted cable containing void defect.