Reinforcement Learning-Based Coexistence Interference Management in Wireless Body Area Networks

Current trends in remote health monitoring to monetize on the Internet of Things applications have been raised in efficient and interference free communications in Wireless Body Area Network (WBAN) scenario. Co-existence interference in WBANs have aggravates the over-congested radio bands, thereby requiring efficient Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) strategies and improve interference management. Existing solutions utilize simplistic heuristics to approach interference problems. The scope of this research article is to investigate reinforcement learning for efficient interference management under co-existing scenarios with an emphasis on homogenous interferences. The aim of this paper is to suggest a smart CSMA/CA mechanism based on reinforcement learning called QIM-MAC that effectively uses sense slots with minimal interference. Simulation results are analyzed based on scenarios which show that the proposed approach maximized Average Network Throughput and Packet Delivery Ratio and minimized Packet Loss Ratio, Energy Consumption and Average Delay.

Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms

High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance.

A 15 Minute-Based Approach for Berth Allocation and Quay Crane Assignment

In traditional integrated berth allocation with quay crane assignment models, time dimension is usually assumed in hourly based. However, nowadays, transshipment becomes the main business to many container terminals, especially in Southeast Asia (e.g. Hong Kong and Singapore). In these terminals, vessel arrivals are usually very frequent with small handling volume and very short staying time. Therefore, the traditional hourly-based modeling approach may cause significant berth and quay crane idling, and consequently cannot meet their practical needs. In this connection, a 15-minute-based modeling approach is requested by industrial practitioners. Accordingly, a Three-level Genetic Algorithm (3LGA) with Quay Crane (QC) shifting heuristics is designed to fulfill the research gap. The objective function here is to minimize the total service time. Preliminary numerical results show that the proposed 15-minute-based approach can reduce the berth and QC idling significantly.

Model of Transhipment and Routing Applied to the Cargo Sector in Small and Medium Enterprises of Bogotá, Colombia

This paper presents a design of a model for planning the distribution logistics operation. The significance of this work relies on the applicability of this fact to the analysis of small and medium enterprises (SMEs) of dry freight in Bogotá. Two stages constitute this implementation: the first one is the place where optimal planning is achieved through a hybrid model developed with mixed integer programming, which considers the transhipment operation based on a combined load allocation model as a classic transshipment model; the second one is the specific routing of that operation through the heuristics of Clark and Wright. As a result, an integral model is obtained to carry out the step by step planning of the distribution of dry freight for SMEs in Bogotá. In this manner, optimum assignments are established by utilizing transshipment centers with that purpose of determining the specific routing based on the shortest distance traveled.

Stochastic Repair and Replacement with a Single Repair Channel

This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov's forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system’s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration.

Solving Process Planning, Weighted Earliest Due Date Scheduling and Weighted Due Date Assignment Using Simulated Annealing and Evolutionary Strategies

Traditionally, three important manufacturing functions which are process planning, scheduling and due-date assignment are performed sequentially and separately. Although there are numerous works on the integration of process planning and scheduling and plenty of works focusing on scheduling with due date assignment, there are only a few works on integrated process planning, scheduling and due-date assignment. Although due-dates are determined without taking into account of weights of the customers in the literature, here weighted due-date assignment is employed to get better performance. Jobs are scheduled according to weighted earliest due date dispatching rule and due dates are determined according to some popular due date assignment methods by taking into account of the weights of each job. Simulated Annealing, Evolutionary Strategies, Random Search, hybrid of Random Search and Simulated Annealing, and hybrid of Random Search and Evolutionary Strategies, are applied as solution techniques. Three important manufacturing functions are integrated step-by-step and higher integration levels are found better. Search meta-heuristics are found to be very useful while improving performance measure.

A Genetic Algorithm Based Permutation and Non-Permutation Scheduling Heuristics for Finite Capacity Material Requirement Planning Problem

This paper presents a genetic algorithm based permutation and non-permutation scheduling heuristics (GAPNP) to solve a multi-stage finite capacity material requirement planning (FCMRP) problem in automotive assembly flow shop with unrelated parallel machines. In the algorithm, the sequences of orders are iteratively improved by the GA characteristics, whereas the required operations are scheduled based on the presented permutation and non-permutation heuristics. Finally, a linear programming is applied to minimize the total cost. The presented GAPNP algorithm is evaluated by using real datasets from automotive companies. The required parameters for GAPNP are intently tuned to obtain a common parameter setting for all case studies. The results show that GAPNP significantly outperforms the benchmark algorithm about 30% on average.

Job Shop Scheduling: Classification, Constraints and Objective Functions

The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.

Solving Weighted Number of Operation Plus Processing Time Due-Date Assignment, Weighted Scheduling and Process Planning Integration Problem Using Genetic and Simulated Annealing Search Methods

Traditionally, the three important manufacturing functions, which are process planning, scheduling and due-date assignment, are performed separately and sequentially. For couple of decades, hundreds of studies are done on integrated process planning and scheduling problems and numerous researches are performed on scheduling with due date assignment problem, but unfortunately the integration of these three important functions are not adequately addressed. Here, the integration of these three important functions is studied by using genetic, random-genetic hybrid, simulated annealing, random-simulated annealing hybrid and random search techniques. As well, the importance of the integration of these three functions and the power of meta-heuristics and of hybrid heuristics are studied.

A Comparative Analysis of Heuristics Applied to Collecting Used Lubricant Oils Generated in the City of Pereira, Colombia

Currently, in Colombia is arising a problem related to collecting used lubricant oils which are generated by the increment of the vehicle fleet. This situation does not allow a proper disposal of this type of waste, which in turn results in a negative impact on the environment. Therefore, through the comparative analysis of various heuristics, the best solution to the VRP (Vehicle Routing Problem) was selected by comparing costs and times for the collection of used lubricant oils in the city of Pereira, Colombia; since there is no presence of management companies engaged in the direct administration of the collection of this pollutant. To achieve this aim, six proposals of through methods of solution of two phases were discussed. First, the assignment of the group of generator points of the residue was made (previously identified). Proposals one and four of through methods are based on the closeness of points. The proposals two and five are using the scanning method and the proposals three and six are considering the restriction of the capacity of collection vehicle. Subsequently, the routes were developed - in the first three proposals by the Clarke and Wright's savings algorithm and in the following proposals by the Traveling Salesman optimization mathematical model. After applying techniques, a comparative analysis of the results was performed and it was determined which of the proposals presented the most optimal values in terms of the distance, cost and travel time.

An Optimal Steganalysis Based Approach for Embedding Information in Image Cover Media with Security

This paper deals with the study of interest in the fields of Steganography and Steganalysis. Steganography involves hiding information in a cover media to obtain the stego media in such a way that the cover media is perceived not to have any embedded message for its unintended recipients. Steganalysis is the mechanism of detecting the presence of hidden information in the stego media and it can lead to the prevention of disastrous security incidents. In this paper, we provide a critical review of the steganalysis algorithms available to analyze the characteristics of an image stego media against the corresponding cover media and understand the process of embedding the information and its detection. We anticipate that this paper can also give a clear picture of the current trends in steganography so that we can develop and improvise appropriate steganalysis algorithms.

Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs

The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.

Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

This paper covers application of an elitist selfadaptive step-size search (ESASS) to optimum design of steel skeletal structures. In the ESASS two approaches are considered for improving the convergence accuracy as well as the computational efficiency of the original technique namely the so called selfadaptive step-size search (SASS). Firstly, an additional randomness is incorporated into the sampling step of the technique to preserve exploration capability of the algorithm during the optimization. Moreover, an adaptive sampling scheme is introduced to improve the quality of final solutions. Secondly, computational efficiency of the technique is accelerated via avoiding unnecessary analyses during the optimization process using an upper bound strategy. The numerical results demonstrate the usefulness of the ESASS in the sizing optimization problems of steel truss and frame structures.

SMART: Solution Methods with Ants Running by Types

Ant algorithms are well-known metaheuristics which have been widely used since two decades. In most of the literature, an ant is a constructive heuristic able to build a solution from scratch. However, other types of ant algorithms have recently emerged: the discussion is thus not limited by the common framework of the constructive ant algorithms. Generally, at each generation of an ant algorithm, each ant builds a solution step by step by adding an element to it. Each choice is based on the greedy force (also called the visibility, the short term profit or the heuristic information) and the trail system (central memory which collects historical information of the search process). Usually, all the ants of the population have the same characteristics and behaviors. In contrast in this paper, a new type of ant metaheuristic is proposed, namely SMART (for Solution Methods with Ants Running by Types). It relies on the use of different population of ants, where each population has its own personality.

Segmentation of Korean Words on Korean Road Signs

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Analysis of Heuristic Based Hybrid Simulated Annealing Algorithm for Multiprocessor Task Scheduling

Multiprocessor task scheduling problem for dependent and independent tasks is computationally complex problem. Many methods are proposed to achieve optimal running time. As the multiprocessor task scheduling is NP hard in nature, therefore, many heuristics are proposed which have improved the makespan of the problem. But due to problem specific nature, the heuristic method which provide best results for one problem, might not provide good results for another problem. So, Simulated Annealing which is meta heuristic approach is considered. It can be applied on all types of problems. However, due to many runs, meta heuristic approach takes large computation time. Hence, the hybrid approach is proposed by combining the Duplication Scheduling Heuristic and Simulated Annealing (SA) and the makespan results of Simple Simulated Annealing and Hybrid approach are analyzed.

Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data

Imperialist Competitive Algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population-based algorithm which has achieved a great performance in comparison to other metaheuristics. This study is about developing enhanced ICA approach to solve the Cell Formation Problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.

Personas Help Understand Users’ Needs, Goals and Desires in an Online Institutional Repository

Communicating users' needs, goals and problems help designers and developers overcome challenges faced by end users. Personas are used to represent end users’ needs. In our research, creating personas allowed the following questions to be answered: Who are the potential user groups? What do they want to achieve by using the service? What are the problems that users face? What should the service provide to them? To develop realistic personas, we conducted a focus group discussion with undergraduate and graduate students and also interviewed a university librarian. The personas were created to help evaluating the Institutional Repository that is based on the DSpace system. The profiles helped to communicate users' needs, abilities, tasks, and problems, and the task scenarios used in the heuristic evaluation were based on these personas. Four personas resulted of a focus group discussion with undergraduate and graduate students and from interviewing a university librarian. We then used these personas to create focused task-scenarios for a heuristic evaluation on the system interface to ensure that it met users' needs, goals, problems and desires. In this paper, we present the process that we used to create the personas that led to devise the task scenarios used in the heuristic evaluation as a follow up study of the DSpace university repository.

Advanced Technologies and Algorithms for Efficient Portfolio Selection

In this paper we present a classification of the various technologies applied for the solution of the portfolio selection problem according to the discipline and the methodological framework followed. We provide a concise presentation of the emerged categories and we are trying to identify which methods considered obsolete and which lie at the heart of the debate. On top of that, we provide a comparative study of the different technologies applied for efficient portfolio construction and we suggest potential paths for future work that lie at the intersection of the presented techniques.