Collaborative Design System based on Object- Oriented Modeling of Supply Chain Simulation: A Case Study of Thai Jewelry Industry

The paper proposes a new concept in developing collaborative design system. The concept framework involves applying simulation of supply chain management to collaborative design called – 'SCM–Based Design Tool'. The system is developed particularly to support design activities and to integrate all facilities together. The system is aimed to increase design productivity and creativity. Therefore, designers and customers can collaborate by the system since conceptual design. JAG: Jewelry Art Generator based on artificial intelligence techniques is integrated into the system. Moreover, the proposed system can support users as decision tool and data propagation. The system covers since raw material supply until product delivery. Data management and sharing information are visually supported to designers and customers via user interface. The system is developed on Web–assisted product development environment. The prototype system is presented for Thai jewelry industry as a system prototype demonstration, but applicable for other industry.

Continual Improvement with Integrated Management System

Management Systems are powerful tools for businesses to manage quality , environmental and occupational health and safety requirements . where once these systems were considered as stand alone control mechanisms , industry is now opting to increase the efficiency of these documented systems through a more integrated approach . System integration offers a significant step forward, where there are similarities between system components , reducing duplication and adminstration costs and increasing efficiency . At first , this paper reviews integrated management system structure and its benefits. The second part of this paper focuses on the one example implementation of such a system at Imam Khomeini Hospital and in final part of the paper will be discuss outcomes of that proccess .

Synthesis and Characterization of ZnO and Fe3O4 Nanocrystals from Oleat-based Organometallic Compounds

Magnetic and semiconductor nanomaterials exhibit novel magnetic and optical properties owing to their unique size and shape-dependent effects. With shrinking the size down to nanoscale region, various anomalous properties that normally not present in bulk start to dominate. Ability in harnessing of these anomalous properties for the design of various advance electronic devices is strictly dependent on synthetic strategies. Hence, current research has focused on developing a rational synthetic control to produce high quality nanocrystals by using organometallic approach to tune both size and shape of the nanomaterials. In order to elucidate the growth mechanism, transmission electron microscopy was employed as a powerful tool in performing real time-resolved morphologies and structural characterization of magnetic (Fe3O4) and semiconductor (ZnO) nanocrystals. The current synthetic approach is found able to produce nanostructures with well-defined shapes. We have found that oleic acid is an effective capping ligand in preparing oxide-based nanostructures without any agglomerations, even at high temperature. The oleate-based precursors and capping ligands are fatty acid compounds, which are respectively originated from natural palm oil with low toxicity. In comparison with other synthetic approaches in producing nanostructures, current synthetic method offers an effective route to produce oxide-based nanomaterials with well-defined shapes and good monodispersity. The nanocystals are well-separated with each other without any stacking effect. In addition, the as-synthesized nanopellets are stable in terms of chemically and physically if compared to those nanomaterials that are previous reported. Further development and extension of current synthetic strategy are being pursued to combine both of these materials into nanocomposite form that will be used as “smart magnetic nanophotocatalyst" for industry waste water treatment.

Effects of Paste Content on Flow Characteristics of SCC Containing Local Natural Pozzolan

Natural pozzolan (NP) is one of the potential prehistoric alternative binders in the construction industry. It has been investigated as cement replacement in ordinary concrete by several researchers for many purposes. Various supplementary cementitious materials (SCMs) such as fly ash, limestone dust and silica fume are widely used in the production of SCC; however, limited studies to address the effect of NP on the properties of SCC are documented. The current research is composed of different SCC paste and concrete mixtures containing different replacement levels of local NP as an alternative SCM. The effect of volume of paste containing different amounts of local NP related to W/B ratio and cement content on SCC fresh properties was assessed. The variations in the fresh properties of SCC paste and concrete represented by slump flow (flowability) and the flow rate were determined and discussed. The results indicated that the flow properties of SCC paste and concrete mixtures, at their optimized superplasticizer dosages, were affected by the binder content of local NP and the total volume fraction of SCC paste.

The Intersubjective Dynamic Regarding Commercial Failures of Foreign Migration of Brands in Food Industry

On the basis of questionnaires and interviews of two samples of subjects (French and Anglo-Saxon) for which two food products were presented (one of the subject’s country and one of the foreign country), we have shown how consumers could be sensitive to the label or brand written on the package of the food product. Furthermore, in the light of Intersubjectivity theory, we have shown the necessity for the consumer to find congruence between the direct and meta perspective towards the product for which the producer and especially the marketer is responsible. Taking into account these findings may help to avoid the commercial failure of a brand while exported abroad.

Amine Solution Recovery Package and Controlling Corrosion in Regeneration Tower

Sarkhoon gas plant, located in south of Iran, has been installed to removal H2S contained in a high pressure natural gas stream. The solvent used for the H2S removal from gaseous stream is 34% by weight (wt%) Di-ethanol amine (DEA) solutions. Due to increasing concentration of heat stable salt (HSS) in solvent, corrosivity of amine solution had been increased. Reports indicated that there was corrosion on the shell of regeneration column. Because source formation of HSS was unknown, we decided to control the amount of HSS at the limit less than 3% wt amine solvent. Therefore, two small columns were filled by strong anionic base and carbon active, and then polluted amine was passed through beds. Finally a temporary amine recovery package on industrial scale was made based on laboratory’s results. From economical point of view we could save $700000 beside corrosion occurrence of the stripping column has been vigorously decreased.

Computer Aided Design of Reshaping Process of Circular Pipes into Square Pipes

Square pipes (pipes with square cross sections) are being used for various industrial objectives, such as machine structure components and housing/building elements. The utilization of them is extending rapidly and widely. Hence, the out-put of those pipes is increasing and new application fields are continually developing. Due to various demands in recent time, the products have to satisfy difficult specifications with high accuracy in dimensions. The reshaping process design of pipes with square cross sections; however, is performed by trial and error and based on expert-s experience. In this paper, a computer-aided simulation is developed based on the 2-D elastic-plastic method with consideration of the shear deformation to analyze the reshaping process. Effect of various parameters such as diameter of the circular pipe and mechanical properties of metal on product dimension and quality can be evaluated by using this simulation. Moreover, design of reshaping process include determination of shrinkage of cross section, necessary number of stands, radius of rolls and height of pipe at each stand, are investigated. Further, it is shown that there are good agreements between the results of the design method and the experimental results.

Training on the Ceasing Intention of Betelnut Addiction

According to the governmental data, the cases of oral cancers doubled in the past 10 years. This had brought heavy burden to the patients- family, the society, and the country. The literature generally evidenced the betel nut contained particular chemicals that can cause oral cancers. Research in Taiwan had also proofed that 90 percent of oral cancer patients had experience of betel nut chewing. It is thus important to educate the betel-nut hobbyists to cease such a hazardous behavior. A program was then organized to establish several training classes across different areas specific to help ceasing this particular habit. Purpose of this research was to explore the attitude and intention toward ceasing betel-nut chewing before and after attending the training classes. 50 samples were taken from a ceasing class with average age at 45 years old with high school education (54%). 74% of the respondents were male in service or agricultural industries. Experiences in betel-nut chewing were 5-20 years with a dose of 1-20 pieces per day. The data had shown that 60% of the respondents had cigarette smoking habit, and 30% of the respondents were concurrently alcoholic dependent. Research results indicated that the attitude, intentions, and the knowledge on oral cancers were found significant different between before and after attendance. This provided evidence for the effectiveness of the training class. However, we do not perform follow-up after the class. Noteworthy is the test result also shown that participants who were drivers as occupation, or habitual smokers or alcoholic dependents would be less willing to quit the betel-nut chewing. The test results indicated as well that the educational levels and the type of occupation may have significant impacts on an individual-s decisions in taking betel-nut or substance abuse.

Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.

Predicting Extrusion Process Parameters Using Neural Networks

The objective of this paper is to estimate realistic principal extrusion process parameters by means of artificial neural network. Conventionally, finite element analysis is used to derive process parameters. However, the finite element analysis of the extrusion model does not consider the manufacturing process constraints in its modeling. Therefore, the process parameters obtained through such an analysis remains highly theoretical. Alternatively, process development in industrial extrusion is to a great extent based on trial and error and often involves full-size experiments, which are both expensive and time-consuming. The artificial neural network-based estimation of the extrusion process parameters prior to plant execution helps to make the actual extrusion operation more efficient because more realistic parameters may be obtained. And so, it bridges the gap between simulation and real manufacturing execution system. In this work, a suitable neural network is designed which is trained using an appropriate learning algorithm. The network so trained is used to predict the manufacturing process parameters.

Decision Support System for Suppliers

Supplier selection is a multi criteria decision-making process that comprises tangible and intangible factors. The majority of previous supplier selection techniques do not consider strategic perspective. Besides, uncertainty is one of the most important obstacles in supplier selection. For the first, time in this paper, the idea of the algorithm " Knapsack " is used to select suppliers Moreover, an attempt has to be made to take the advantage of a simple numerical method for solving model .This is an innovation to resolve any ambiguity in choosing suppliers. This model has been tried in the suppliers selected in a competitive environment and according to all desired standards of quality and quantity to show the efficiency of the model, an industry sample has been uses.

Gender Diversity Culture Check: Study of the Influencing Factors of the Organizational Culture on the Number and Acceptance of Women in Leadership Positions in the Aviation Industry in Germany

Under-representation of women in leadership positions" is still a general phenomenon in Germany despite the high number of implemented measures. The under-representation of female executives in the aviation sector is even worse. In this context our research hypothesis is that the representation and acceptance of women in management positions is determined by corporate culture.

Optimization of CO2 Emissions and Cost for Composite Building Design with NSGA-II

Environmental pollution problems have been globally main concern in all fields including economy, society and culture into the 21st century. Beginning with the Kyoto Protocol, the reduction on the emissions of greenhouse gas such as CO2 and SOX has been a principal challenge of our day. As most buildings unlike durable goods in other industries have a characteristic and long life cycle, they consume energy in quantity and emit much CO2. Thus, for green building construction, more research is needed to reduce the CO2 emissions at each stage in the life cycle. However, recent studies are focused on the use and maintenance phase. Also, there is a lack of research on the initial design stage, especially the structure design. Therefore, in this study, we propose an optimal design plan considering CO2 emissions and cost in composite buildings simultaneously by applying to the structural design of actual building.

Differences in IT Effectiveness among Firms: An Empirical Investigation

Information is a critical asset and an important source for gaining competitive advantage in firms. The effective maintenance of IT becomes an important task. In order to better understand the determinants of IT effectiveness, this study employs the Industrial Organization (I/O) and Resource Based View (RBV) theories and investigates the industry effect and several major firmspecific factors in relation to their impact on firms- IT effectiveness. The data consist of a panel data of ten-year observations of firms whose IT excellence had been recognized by the CIO Magazine. The non-profit organizations were deliberately excluded, as explained later. The results showed that the effectiveness of IT management varied significantly across industries. Industry also moderated the effects of firm demographic factors such as size and age on IT effectiveness. Surprisingly, R & D investment intensity had negative correlation to IT effectiveness. For managers and practitioners, this study offers some insights for evaluation criteria and expectation for IT project success. Finally, the empirical results indicate that the sustainability of IT effectiveness appears to be short in duration.

The State-of-Art Environmental Impact Assessment: An Overview

The research on the effectiveness of environmental assessment (EA) is a milestone effort to evaluate the state of the field, including many contributors related with a lot of countries since more than two decades. In the 1960s, there was a surge of interest between modern industrialized countries over unexpected opposite effects of technical invention. The interest led to choice of approaches for assessing and prediction the impressions of technology and advancement for social and economic, state health and safety, solidity and the circumstances. These are consisting of risk assessment, technology assessment, environmental impact assessment and costbenefit analysis. In this research contribution, the authors have described the research status for environmental assessment in cumulative environmental system. This article discusses the methods for cumulative effect assessment (CEA).

Analysis of Electric Field and Potential Distributions along Surface of Silicone Rubber Insulators under Various Contamination Conditions Using Finite Element Method

This paper presents the simulation results of electric field and potential distributions along surface of silicone rubber polymer insulators under clean and various contamination conditions with/without water droplets. Straight sheds insulator having leakage distance 290 mm was used in this study. Two type of contaminants, playwood dust and cement dust, have been studied the effect of contamination on the insulator surface. The objective of this work is to comparison the effect of contamination on potential and electric field distributions along the insulator surface when water droplets exist on the insulator surface. Finite element method (FEM) is adopted for this work. The simulation results show that contaminations have no effect on potential distribution along the insulator surface while electric field distributions are obviously depended on contamination conditions.

Capability Investigation of Carbon Sequestration in Two Species (Artemisia sieberi Besser and Stipabarbata Desf) Under Different Treatments of Vegetation Management (Saveh, Iran)

The rangelands, as one of the largest dynamic biomes in the world, have very capabilities. Regulation of greenhouse gases in the Earth's atmosphere, particularly carbon dioxide as the main these gases, is one of these cases. The attention to rangeland, as cheep and reachable resources to sequestrate the carbon dioxide, increases after the Industrial Revolution. Rangelands comprise the large parts of Iran as a steppic area. Rudshur (Saveh), as area index of steppic area, was selected under three sites include long-term exclosure, medium-term exclosure, and grazable area in order to the capable of carbon dioxide’s sequestration of dominated species. Canopy cover’s percentage of two dominated species (Artemisia sieberi Besser & Stipa barbata Desf) was determined via establishing of random 1 square meter plot. The sampling of above and below ground biomass style was obtained by complete random. After determination of ash percentage in the laboratory; conversion ratio of plant biomass to organic carbon was calculated by ignition method. Results of the paired t-test showed that the amount of carbon sequestration in above ground and underground biomass of Artemisia sieberi Besser & Stipa barbata Desf is different in three regions. It, of course, hasn’t any difference between under and surface ground’s biomass of Artemisia sieberi Besser in long-term exclosure. The independent t-test results indicate differences between underground biomass corresponding each other in the studied sites. Carbon sequestration in the Stipa barbata Desf was totally more than Artemisia sieberi Besser. Altogether, the average sequestration of the long-term exclosure was 5.842gr/m², the medium-term exclosure was 4.115gr/m², and grazable area was 5.975gr/m² so that there isn’t valuable statistical difference in term of total amount of carbon sequestration to three sites.

Analysis of the Effect of 1980 Transformation on the Foreign Trade of Turkey with Chow Test

While import-substituting industrialization policy constitute the basis for the industrialization strategies of the 1960s and 1970s in Turkey, this policy was no longer sustainable by the 1980s. For this reason, export-oriented industrialization policy was adopted with the decisions taken on January 24, 1980. In other words, the post-1980 period, Turkey's economy has adopted outwardoriented industrialization strategy. In this study, it is aimed to analyze the effect of the change in economic structure on foreign trade with the transformation of foreign trade and industrialization policies in the post-1980 period. In this respect, in order to analyze the relationship between import, export and economic growth by using variables of the 1960-2011 period, Chow test was applied. In the analysis the reason for using Chow test is whether there is any difference in economic terms between import-substituting industrialization policy applied in the 1960-1980 period and the 1981-2011 period during which exportoriented industrialization policy was applied as a result of the structural transformation.

The Effect of Compost Addition on Chemical and Nitrogen Characteristics, Respiration Activity and Biomass Production in Prepared Reclamation Substrates

Land degradation is of concern in many countries. People more and more must address the problems associated with the degradation of soil properties due to man. Increasingly, organic soil amendments, such as compost are being examined for their potential use in soil restoration and for preventing soil erosion. In the Czech Republic, compost is the most used to improve soil structure and increase the content of soil organic matter. Land reclamation / restoration is one of the ways to evaluate industrially produced compost because Czech farmers are not willing to use compost as organic fertilizer. The most common use of reclamation substrates in the Czech Republic is for the rehabilitation of landfills and contaminated sites. This paper deals with the influence of reclamation substrates (RS) with different proportions of compost and sand on selected soil properties–chemical characteristics, nitrogen bioavailability, leaching of mineral nitrogen, respiration activity and plant biomass production. Chemical properties vary proportionally with addition of compost and sand to the control variant (topsoil). The highest differences between the variants were recorded in leaching of mineral nitrogen (varies from 1.36mg dm-3 in C to 9.09mg dm-3). Addition of compost to soil improves conditions for plant growth in comparison with soil alone. However, too high addition of compost may have adverse effects on plant growth. In addition, high proportion of compost increases leaching of mineral N. Therefore, mixture of 70% of soil with 10% of compost and 20% of sand may be recommended as optimal composition of RS.

Bendability Analysis for Bending of C-Mn Steel Plates on Heavy Duty 3-Roller Bending Machine

Bendability is constrained by maximum top roller load imparting capacity of the machine. Maximum load is encountered during the edge pre-bending stage of roller bending. Capacity of 3-roller plate bending machine is specified by maximum thickness and minimum shell diameter combinations that can be pre-bend for given plate material of maximum width. Commercially available plate width or width of the plate that can be accommodated on machine decides the maximum rolling width. Original equipment manufacturers (OEM) provide the machine capacity chart based on reference material considering perfectly plastic material model. Reported work shows the bendability analysis of heavy duty 3-roller plate bending machine. The input variables for the industry are plate thickness, shell diameter and material property parameters, as it is fixed by the design. Analytical models of equivalent thickness, equivalent width and maximum width based on power law material model were derived to study the bendability. Equation of maximum width provides bendability for designed configuration i.e. material property, shell diameter and thickness combinations within the machine limitations. Equivalent thicknesses based on perfectly plastic and power law material model were compared for four different materials grades of C-Mn steel in order to predict the bend-ability. Effect of top roller offset on the bendability at maximum top roller load imparting capacity is reported.