Synthesis and Characterization of ZnO and Fe3O4 Nanocrystals from Oleat-based Organometallic Compounds

Magnetic and semiconductor nanomaterials exhibit novel magnetic and optical properties owing to their unique size and shape-dependent effects. With shrinking the size down to nanoscale region, various anomalous properties that normally not present in bulk start to dominate. Ability in harnessing of these anomalous properties for the design of various advance electronic devices is strictly dependent on synthetic strategies. Hence, current research has focused on developing a rational synthetic control to produce high quality nanocrystals by using organometallic approach to tune both size and shape of the nanomaterials. In order to elucidate the growth mechanism, transmission electron microscopy was employed as a powerful tool in performing real time-resolved morphologies and structural characterization of magnetic (Fe3O4) and semiconductor (ZnO) nanocrystals. The current synthetic approach is found able to produce nanostructures with well-defined shapes. We have found that oleic acid is an effective capping ligand in preparing oxide-based nanostructures without any agglomerations, even at high temperature. The oleate-based precursors and capping ligands are fatty acid compounds, which are respectively originated from natural palm oil with low toxicity. In comparison with other synthetic approaches in producing nanostructures, current synthetic method offers an effective route to produce oxide-based nanomaterials with well-defined shapes and good monodispersity. The nanocystals are well-separated with each other without any stacking effect. In addition, the as-synthesized nanopellets are stable in terms of chemically and physically if compared to those nanomaterials that are previous reported. Further development and extension of current synthetic strategy are being pursued to combine both of these materials into nanocomposite form that will be used as “smart magnetic nanophotocatalyst" for industry waste water treatment.




References:
[1] Wang, J., Gudiksen, M.S., Duan, X., Cui, Y., Lieber, C.M., (2001)
"Highly polarized photoluminescence and photodetection from single
indium phosphide nanowires", Science, 293, 1455-1457.
[2] Zhong, Z., Qian, F., Wang, D., Lieber, C.M., (2003) "Synthesis of p-type
gallium nitride nanowires for electronic and photonic nanodevices",
Nanoletters, 3 (3), 343-346.
[3] Hahm, J., Lieber, C.M., (2004) "Direct ultrasensitive electrical detection
of DNA and DNA sequence variations using nanowire nanosensors",
Nanoletters, 4 (1), 51-54.
[4] Alivisatos, A.P., (1996) "Semiconductor clusters, nanocrystals, and
quantum dots", Science, 271, 933-937.
[5] Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A., (2005) "Chemistry
and properties of nanocrystals of different shapes", Chem. Rev., 105,
1025-1102.
[6] Zhitenev, N.B., Fulton, T.A., Yacob, A., Hess, H.F., Pfeiffer, L.N., West,
K.W., (2000) "Imaging of localized electronic states in the quantum Hall
regime", Nature, 404, 473-476.
[7] Suen, Y.W., Engel, L.W., Santos, M.B., Shayegan, M., Tsui D.C., (1992)
"Observation of a ˆI› = 1/2 fractional quantum Hall state in a
double-layer electron system", Phys. Rev. Lett., 68, 1379-1382.
[8] Stormer, H.L., (1998) "Fractional quantum Hall effect today", Solid State
Commun., 107, 617-620.
[9] Stormer, H.L., Du, R.R., Kang, W., Tsui, D.C., Peeiffer, L.N., Baldwin,
K.W., West, K.W., (1994) "The fractional quantum Hall effect in a new
light", Semicond. Sci. Technol., 9, 1853-1858.
[10] Wang, Z.L., (2004) "Nanostructures of zinc oxide", Mater. Today, 7 (6),
26-33.
[11] Cao, H., Xu, J.Y., Zhang, D.Z., Chang, S.H., Ho, S.T., Seelig, E.W., Liu,
X., Chang, R.P.H., (2000) "Spatial confinement of laser light in active
random media", Phys. Rev. Lett., 84, 5584-5587.
[12] Bagnall, D.M., Chen, Y.F., Zhu, Z., Yao, T., Koyama, S., Shen, M.Y.,
Goto, T., (1997) "Optically pumped lasing of ZnO at room temperature",
Appl. Phys. Lett., 70, 2032-2230.
[13] Yu, P., Tang, Z.K., Wong, K.L., Kawasaki, M., Ohtomo, A., Koinuma,
H., Segawa, Y., (1998) "Room-temperature gain spectra and lasing in
microcrystalline ZnO thin films", J. Cryst. Growth, 184/185, 601-604.
[14] Kayamura, Y., (1988) "Quantum-size effects of interacting electrons and
holes in semiconductor microcrystals with spherical shape", Phys. Rev. B,
38, 9797-9805.
[15] Wegscheider, W., Pfeiffer, L.N., Dignam, M.M., Pinczuk, A. W., West,
K., McCall, S.L., Hull, R., (1993) "Lasing from excitons in quantum
wires", Phys. Rev. Lett., 71, 4071-4074.
[16] Garcia, M.A., Merino, J.M., Pinel, E.F., Quesada, A., Venta, J., Gonzalez,
M.L.R., Castro, G.R., Crespo, P., Llopis, J., G-Calbet, J.M., Hernando, A.,
(2007) "Magnetic properties of ZnO nanoparticles", Nanoletters, 7,
1489-1494.
[17] Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E.,
Russo, R., Yang, P., (2001) "Room-temperature ultraviolet nanowire
nanolasers", Science, 292, 1879-1897.
[18] Wang, X., Song, J., Liu, J., Wang, Z.L., (2007) "Direct-current
nanogenerator driven by ultrasonic waves", Science, 316, 102-105.
[19] Yang, P., (2005) "The chemistry and physics of semiconductor
nanowires", Mater. Res. Bull., 30, 85-91.
[20] Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai,
G., Yang P., (2005) "General route to vertical ZnO nanowire arrays using
textured ZnO seeds", Nanoletters, 5 (7), 1231-1236.
[21] Shen, G., Cho, J.H., Yoo, J.K., Yi, G.C., Lee, C.J., (2005) "Synthesis and
optical properties of S-doped ZnO nanostructures: nanonails and
nanowires", J. Phys. Chem. B, 109, 5491-5496.
[22] Garti, N., Aserin, A., Tiunova, I., Fanun, M., (2000) "A DSC study
ofwater behavior inwaterin-oil microemulsions stabilized by sucrose
esters and butanol", Colloid Surf. A, 170, 1-18.
[23] Khiew, P.S., Huang, N.M., Radiman, S., Ahmad, M.S., (2004) "Synthesis
of NiS nanoparticles using a sugar-ester nonionicwater-in-oil
microemulsion", Mater. Lett., 58, 516-521.
[24] Khiew, P.S., Radiman, S., Huang, N.M., Ahmad, M.S., (2005)
"Preparation and characterization of ZnS nanoparticles synthesized from
chitosan laurate micellar solution", Mater. Lett., 59, 989-993.
[25] Huang, N.M., Radiman, S., Khiew, P.S., Laggner, P., Kan, C.S., (2004)
"In situ templating of PbS nanorods in reverse hexagonal liquid crystal",
Colloids Surf. A, 247, 55-60.
[26] Khiew, P.S., Radiman, S., Huang, N.M., Ahmad, M.S., (2004) "Synthesis
and characterization of copper sulfide nanoparticles in hexagonal phase
lyotropic liquid crystal", J. Cryst. Growth, 268, 227-237.
[27] Khiew, P.S., Radiman, S., Huang, N.M., Ahmad, M.S., (2003) "Studies
on the growth and characterization of CdS and PbS nanoparticles using
sugar-ester nonionic water-in-oil microemulsion", J. Cryst. Growth, 254,
235-243.
[28] Khiew, P.S., Radiman, S., Huang, N.M., Ahmad, M.S., (2004) "In situ
polymerization of conducting polyaniline in bicontinuous cubic phase of
lyotropic liquid crystal", Colloids Surf. A-Physicochem. Eng. Asp., 247,
35-40.
[29] Huang, N.M., Kan, C.S., Khiew, P.S., Radiman, S., (2004) "Single w/o
microemulsion templating of CdS nanoparticles", J. Mater. Sci., 39,
2411-2415.
[30] Khiew, P.S., Huang, N.M., Radiman, S., Ahmad, M.S., (2004) "Synthesis
of NiS nanoparticles using a sugar-ester nonionicwater-in-oil
microemulsion", Mater. Lett., 58 , 762-767.
[31] Chiu, W. S., Khiew, P. S., Isa, D., Cloke, M., Radiman, S., Abd-Shukor,
R., Abdullah, M. H., Huang, N. M. (2008) "Synthesis of two-dimensional
ZnO nanopellets by pyrolysis of zinc oleate" Chem. Eng. J., 142(3),
337-343.
[32] Hirano, S., Masuya, K., Kuwabara, M., (2004) "Multi-nucleation-based
formation of oriented zinc oxide microcrystals and films in aqueous
solutions", J. Phys. Chem. B, 108, 4576-4578.
[33] Kuo, C.L., Kuo, T.J., Huang, M.H., (2005) "Hydrothermal synthesis of
ZnO microspheres and hexagonal microrods with sheetlike and platelike
nanostructures", J. Phys. Chem. B, 109 (43), 20115-20121.
[34] Yoshida, T., Tochimoto, M., Schlettwein, D., Wohrle, D., Sugiura, T.,
Minoura, H., (1999) "Self-assembly of zinc oxide thin films modified
with tetrasulfonated metallophthalocyanines by one-step
electrodeposition", Chem. Mater., 11, 2657-2667.
[35] Pinna, N., Weiss, K., Kongehl, H.S., Vogel, W., Urban, J., Pileni, M.P.,
(2001) "Triangular CdS nanocrystals: synthesis, characterization, and
stability", Langmuir, 17, 7982-7987.
[36] Fons, P., Tampo, H., Kolobov, A.V., Ohkubo, M., Niki, S., Tominaga, J.,
Carboni, R., Boscherini, F., Friedrich, S., (2006) "Direct observation of
nitrogen location in molecular beam epitaxy grown nitrogen-doped ZnO",
Phys. Rev. Lett., 96, 045504-045505.
[37] Chiu, W.S., Radiman, S., Abdullah, M.H., Khiew, P.S., Huang, N.M.,
Abd-Shukor, R., (2007) "One pot synthesis of monodisperse Fe3O4
nanocrystals by pyrolysis reaction of organometallic compound", Mater.
Chem. Phys., 106, 231-235.
[38] Peng, X., (2003) "Mechanisms for the shape-control and shape-evolution
of colloidal semiconductor nanocrystals", Adv. Mater., 15 (5), 459-463.
[39] Yu, W.W., Wang, Y.A., Peng, X., (2003) "Formation and stability of
size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects
on monomers and nanocrystals", Chem. Mater., 15, 4300-4308.
[40] Yu, W.W., Peng, X., (2002) "Formation of high-quality CdS and other
II-VI semiconductor nanocrystals in noncoordinating solvents: tunable
reactivity of monomers", Angew. Chem. Int. Ed., 41 (13), 2368-2371.
[41] Wang, Z.L., Kong, X.Y., Zuo, J.M., (2003) "Induced growth of
asymmetric nanocantilever arrays on polar surfaces-, Phys. Rev. Lett., 91
(18), 185502-185505.
[42] Chiu, W.S., Radiman, S., Abd-Shukor, R., Abdullah, M.H., Khiew, P.S.,
(2008) "Tunable coercivity of CoFe2O4 nanoparticles via thermal
annealing treatment", J. Alloy Comp., 459, 291-297.
[43] Bovin, J.O., Wallember, R.L., Smith, D., (1985) "Imaging of atomic
clouds outside the surfaces of gold crystals by electron microscopy",
Nature, 317, 47-49.
[44] Iijima, S., Ichihashi, H., (1986) "Structural instability of ultrafine particles
of metals", Phys. Rev. Lett., 56, 616-619.
[45] Zhu, H., Averback R.S., (1996) "Sintering processes of two nanoparticles:
a study by molecular dynamics simulations", Philos. Magn. Lett., 73,
27-33.
[46] Wiley, B.J., Im, S.H., Li, Z.Y., McLellan, J., Siekkinen, A., Xia, Y.,
(2006) "Maneuvering the surface plasmon resonance of silver
nanostructures through shape-controlled synthesis", J. Phys. Chem. B,
110, 15666-15675.
[47] Kelly, K.L., Corondo, E., Zhao, L.L., Sxhatz, G.C., (2003) "The optical
properties of metal nanoparticles: the influence of size, shape, and
dielectric environment", J. Phys. Chem. B, 107, 668-677.
[48] Joint Committee for Powder Diffraction Society (JCPDS), Powder
Diffraction Database, pattern: 36-1451.
[49] Yeh, C.Y., Lu, Z.W., Froyen, S., Zunger, A., (1992) "Zinc-blende?
wurtzite polytypism in semiconductors", Phys. Rev. B, 46, 10086-10097.
[50] Yeh, C.Y., Wei, S.H., Zunger, A., (1994) "Relationships between the
band gaps of the zincblende and wurtzite modifications of
semiconductors", Phys. Rev. B, 50, 2715-2718.
[51] Serrano, J., Romero, A.H., Manjon, F.J. ', Lauck, R., Cardona, M., Rubio,
A., (2004) "Pressure dependence of the lattice dynamics of ZnO: an ab
initio approach", Phys. Rev. B, 69, 094306-094319.
[52] Shackelford, J.F., Introduction toMaterial Science for Engineers, 6th ed.,
Pearson-Prentice Hall, USA, 2004, p. 106.
[53] Yeh, C.Y., Wei, S.H., Zunger, A., (1994) "Relationships between the
band gaps of the zincblende and wurtzite modifications of
semiconductors", Phys. Rev. B, 50, 2715-2718.