The Exploitation of Balancing an Inverted Pendulum System Using Sliding Mode Control

The inverted pendulum system is a classic control problem that is used in universities around the world. It is a suitable process to test prototype controllers due to its high non-linearities and lack of stability. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. This paper presents the possibility of balancing an inverted pendulum system using sliding mode control (SMC). The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle and cart's position. Therefore, proportional-integral-derivative (PID) is used for comparison. Results have proven SMC control produced better response compared to PID control in both normal and noisy systems.

Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects

In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.

Enhance the Modeling of BLDC Motor Based on Fuzzy Logic

This paper describes a simple way to control the speed of PMBLDC motor using Fuzzy logic control method. In the conventional PI controller the performance of the motor system is simulated and the speed is regulated by using PI controller. These methods used to improve the performance of PMSM drives, but in some cases at different operating conditions when the dynamics of the system also vary over time and it can change the reference speed, parameter variations and the load disturbance. The simulation is powered with the MATLAB program to get a reliable and flexible simulation. In order to highlight the effectiveness of the speed control method the FLC method is used. The proposed method targeted in achieving the improved dynamic performance and avoids the variations of the motor drive. This drive has high accuracy, robust operation from near zero to high speed. The effectiveness and flexibility of the individual techniques of the speed control method will be thoroughly discussed for merits and demerits and finally verified through simulation and experimental results for comparative analysis.

Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems

Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.

Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Questions Categorization in E-Learning Environment Using Data Mining Technique

Nowadays, education cannot be imagined without digital technologies. It broadens the horizons of teaching learning processes. Several universities are offering online courses. For evaluation purpose, e-examination systems are being widely adopted in academic environments. Multiple-choice tests are extremely popular. Moving away from traditional examinations to e-examination, Moodle as Learning Management Systems (LMS) is being used. Moodle logs every click that students make for attempting and navigational purposes in e-examination. Data mining has been applied in various domains including retail sales, bioinformatics. In recent years, there has been increasing interest in the use of data mining in e-learning environment. It has been applied to discover, extract, and evaluate parameters related to student’s learning performance. The combination of data mining and e-learning is still in its babyhood. Log data generated by the students during online examination can be used to discover knowledge with the help of data mining techniques. In web based applications, number of right and wrong answers of the test result is not sufficient to assess and evaluate the student’s performance. So, assessment techniques must be intelligent enough. If student cannot answer the question asked by the instructor then some easier question can be asked. Otherwise, more difficult question can be post on similar topic. To do so, it is necessary to identify difficulty level of the questions. Proposed work concentrate on the same issue. Data mining techniques in specific clustering is used in this work. This method decide difficulty levels of the question and categories them as tough, easy or moderate and later this will be served to the desire students based on their performance. Proposed experiment categories the question set and also group the students based on their performance in examination. This will help the instructor to guide the students more specifically. In short mined knowledge helps to support, guide, facilitate and enhance learning as a whole.

An Implementation of Multi-Media Applications in Teaching Structural Design to Architectural Students

Teaching methods include lectures, workshops and tutorials for the presentation and discussion of ideas have become out of date; were developed outside the discipline of architecture from the college of engineering and do not satisfy the architectural students’ needs and causes them many difficulties in integrating structure into their design. In an attempt to improve structure teaching methods, this paper focused upon proposing a supportive teaching/learning tool using multi-media applications which seeks to better meet the architecture student’s needs and capabilities and improve the understanding and application of basic and intermediate structural engineering and technology principles. Before introducing the use of multi-media as a supportive teaching tool, a questionnaire was distributed to third year students of a structural design course who were selected as a sample to be surveyed forming a sample of 90 cases. The primary aim of the questionnaire was to identify the students’ learning style and to investigate whether the selected method of teaching could make the teaching and learning process more efficient. Students’ reaction on the use of this method was measured using three key elements indicating that this method is an appropriate teaching method for the nature of the students and the course as well.

SMART: Solution Methods with Ants Running by Types

Ant algorithms are well-known metaheuristics which have been widely used since two decades. In most of the literature, an ant is a constructive heuristic able to build a solution from scratch. However, other types of ant algorithms have recently emerged: the discussion is thus not limited by the common framework of the constructive ant algorithms. Generally, at each generation of an ant algorithm, each ant builds a solution step by step by adding an element to it. Each choice is based on the greedy force (also called the visibility, the short term profit or the heuristic information) and the trail system (central memory which collects historical information of the search process). Usually, all the ants of the population have the same characteristics and behaviors. In contrast in this paper, a new type of ant metaheuristic is proposed, namely SMART (for Solution Methods with Ants Running by Types). It relies on the use of different population of ants, where each population has its own personality.

Game Theory Based Diligent Energy Utilization Algorithm for Routing in Wireless Sensor Network

Many cluster based routing protocols have been proposed in the field of wireless sensor networks, in which a group of nodes are formed as clusters. A cluster head is selected from one among those nodes based on residual energy, coverage area, number of hops and that cluster-head will perform data gathering from various sensor nodes and forwards aggregated data to the base station or to a relay node (another cluster-head), which will forward the packet along with its own data packet to the base station. Here a Game Theory based Diligent Energy Utilization Algorithm (GTDEA) for routing is proposed. In GTDEA, the cluster head selection is done with the help of game theory, a decision making process, that selects a cluster-head based on three parameters such as residual energy (RE), Received Signal Strength Index (RSSI) and Packet Reception Rate (PRR). Finding a feasible path to the destination with minimum utilization of available energy improves the network lifetime and is achieved by the proposed approach. In GTDEA, the packets are forwarded to the base station using inter-cluster routing technique, which will further forward it to the base station. Simulation results reveal that GTDEA improves the network performance in terms of throughput, lifetime, and power consumption.

Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network

Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.

Occurrence of Adult Taenia saginata in Cattle Slaughtered in Major Abattoirs in Port Harcourt Metropolis, Nigeria

The occurrence of adult Taenia saginata in major abattoirs in Port Harcourt metropolis was investigated. Out of 514 cattle investigated, an overall prevalence of 35(6.8%) was recorded. Infected male and female cattle represented 1.2% (6/514) and 5.6% (29/514) of the overall prevalence respectively. There was a statistical significant difference (P< 0.05) in prevalence of adult Taenaia saginata between male and female cattle examined in the study area. Old cattle have a significant (P< 0.05) infestation rate than young ones. Adult Taenia saginata exists in cattle and still remains a public health concern in the study area. Deliberate effort is needed from stake-holders and the Government to design and implement programs that will lead to the prevention and possible eradication of the parasite.

Automatic Checkpoint System Using Face and Card Information

In the deep south of Thailand, checkpoints for people verification are necessary for the security management of risk zones, such as official buildings in the conflict area. In this paper, we propose an automatic checkpoint system that verifies persons using information from ID cards and facial features. The methods for a person’s information abstraction and verification are introduced based on useful information such as ID number and name, extracted from official cards, and facial images from videos. The proposed system shows promising results and has a real impact on the local society.

Online Topic Model for Broadcasting Contents Using Semantic Correlation Information

This paper proposes a method of learning topics for broadcasting contents. There are two kinds of texts related to broadcasting contents. One is a broadcasting script, which is a series of texts including directions and dialogues. The other is blogposts, which possesses relatively abstracted contents, stories, and diverse information of broadcasting contents. Although two texts range over similar broadcasting contents, words in blogposts and broadcasting script are different. When unseen words appear, it needs a method to reflect to existing topic. In this paper, we introduce a semantic vocabulary expansion method to reflect unseen words. We expand topics of the broadcasting script by incorporating the words in blogposts. Each word in blogposts is added to the most semantically correlated topics. We use word2vec to get the semantic correlation between words in blogposts and topics of scripts. The vocabularies of topics are updated and then posterior inference is performed to rearrange the topics. In experiments, we verified that the proposed method can discover more salient topics for broadcasting contents.

Comparison of Frequency-Domain Contention Schemes in Wireless LANs

In IEEE 802.11 networks, it is well known that the traditional time-domain contention often leads to low channel utilization. The first frequency-domain contention scheme, the time to frequency (T2F), has recently been proposed to improve the channel utilization and has attracted a great deal of attention. In this paper, we present the latest research progress on the weighed frequency-domain contention. We compare the basic ideas, work principles of these related schemes and point out their differences. This paper is very useful for further study on frequency-domain contention.

Optical Flow Technique for Supersonic Jet Measurements

This paper outlines the development of an experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 4 bar and exit Mach of 1.5. High-speed singleframe or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Despite these challenges however, this supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.

A Proposed Hybrid Color Image Compression Based on Fractal Coding with Quadtree and Discrete Cosine Transform

Fractal based digital image compression is a specific technique in the field of color image. The method is best suited for irregular shape of image like snow bobs, clouds, flame of fire; tree leaves images, depending on the fact that parts of an image often resemble with other parts of the same image. This technique has drawn much attention in recent years because of very high compression ratio that can be achieved. Hybrid scheme incorporating fractal compression and speedup techniques have achieved high compression ratio compared to pure fractal compression. Fractal image compression is a lossy compression method in which selfsimilarity nature of an image is used. This technique provides high compression ratio, less encoding time and fart decoding process. In this paper, fractal compression with quad tree and DCT is proposed to compress the color image. The proposed hybrid schemes require four phases to compress the color image. First: the image is segmented and Discrete Cosine Transform is applied to each block of the segmented image. Second: the block values are scanned in a zigzag manner to prevent zero co-efficient. Third: the resulting image is partitioned as fractals by quadtree approach. Fourth: the image is compressed using Run length encoding technique.

Low Complexity Peak-to-Average Power Ratio Reduction in Orthogonal Frequency Division Multiplexing System by Simultaneously Applying Partial Transmit Sequence and Clipping Algorithms

Orthogonal Frequency Division Multiplexing (OFDM) has been used in many advanced wireless communication systems due to its high spectral efficiency and robustness to frequency selective fading channels. However, the major concern with OFDM system is the high peak-to-average power ratio (PAPR) of the transmitted signal. Some of the popular techniques used for PAPR reduction in OFDM system are conventional partial transmit sequences (CPTS) and clipping. In this paper, a parallel combination/hybrid scheme of PAPR reduction using clipping and CPTS algorithms is proposed. The proposed method intelligently applies both the algorithms in order to reduce both PAPR as well as computational complexity. The proposed scheme slightly degrades bit error rate (BER) performance due to clipping operation and it can be reduced by selecting an appropriate value of the clipping ratio (CR). The simulation results show that the proposed algorithm achieves significant PAPR reduction with much reduced computational complexity.

A Framework for Review Spam Detection Research

With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers, but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a highquality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods.

AMBICOM: An Ambient Computing Middleware Architecture for Heterogeneous Environments

Ambient Computing or Ambient Intelligence (AmI) is emerging area in computer science aiming to create intelligently connected environments and Internet of Things. In this paper, we propose communication middleware architecture for AmI. This middleware architecture addresses problems of communication, networking, and abstraction of applications, although there are other aspects (e.g. HCI and Security) within general AmI framework. Within this middleware architecture, any application developer might address HCI and Security issues with extensibility features of this platform.

Computing Visibility Subsets in an Orthogonal Polyhedron

Visibility problems are central to many computational geometry applications. One of the typical visibility problems is computing the view from a given point. In this paper, a linear time procedure is proposed to compute the visibility subsets from a corner of a rectangular prism in an orthogonal polyhedron. The proposed algorithm could be useful to solve classic 3D problems.