Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects

In this paper, we investigate the low-lying energy
levels of the two-dimensional parabolic graphene quantum dots
(GQDs) in the presence of topological defects with long range
Coulomb impurity and subjected to an external uniform magnetic
field. The low-lying energy levels of the system are obtained within
the framework of the perturbation theory. We theoretically
demonstrate that a valley splitting can be controlled by geometrical
parameters of the graphene quantum dots and/or by tuning a uniform
magnetic field, as well as topological defects. It is found that, for
parabolic graphene dots, the valley splitting occurs due to the
introduction of spatial confinement. The corresponding splitting is
enhanced by the introduction of a uniform magnetic field and it
increases by increasing the angle of the cone in subcritical regime.




References:
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. GrigorievaA. A. Firsov, “Electric field effect in
atomically thin carbon films”, Science, vol.306, pp.666-669, 2004.
[2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S.
V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals”, Proc.
Natl Acad. Sci. USA vol. 102, pp. 10 451–10 453, 2005.
[3] K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. vol.
6, pp. 183–191, 2007.
[4] M. I. Katsnelson, “Graphene: carbon in two dimensions”, Mater. Today,
vol. 10, no. 1-2, pp. 20–27, 2007.
[5] P. R. Wallace, “The band theory of graphite”, Phys. Rev. vol. 71, pp.
622, 1946.
[6] G. W. Semenof, “Condensed-Matter Simulation of a Three-Dimensional
Anomaly”, Phys. Rev. Lett. vol. 53, pp. 2449, 1984.
[7] P. Recher and B. Trauzettel “Quantum dots and spin qubits in
graphene”, Nanotechnology vol. 21, pp. 302001, 2010.
[8] F. Molitor, J. Güttinger, C. Stampfer, S. Dröscher, A. Jacobsen, T. Ihn,
K. Ensslin, “Electronic properties of graphene nanostructures”, J. Phys.:
Condens. Matter vol. 23, pp. 243201, 2011.
[9] V. Rozhkova, G. Giavaras, Y. P. Bliokh, V. Freilikher, F. Nori,
“Electronic properties of mesoscopic graphene structures: Charge
confinement and control of spin and charge transport ”, Phys. Rep. vol.
503, pp. 77, 2011.
[10] J. Güttinger, F. Molitor, C. Stampfer, S. Schnez, A. Jacobsen, S.
Dröscher, T. Ihn, K. Ensslin, “Transport through graphene quantum
dots”, Rep. Prog. Phys. vol. 75, pp. 126502, 2012.
[11] P. G. Silvestrov and K. B. Efetov, “Quantum dots in graphene”, Phys.
Rev. Lett. vol. 98, pp. 016802, 2007.
[12] M. I. Kastnelson and K. S. Novoselov, A. K. Geim, “Chiral tunnelling
and the Klein paradox in graphene”, vol. 2, pp. 620, 2006.
[13] J. Milton Pereira Jr., P. Vasilopoulos, and F. M. Peeters, “Tunable
quantum dots in bilayer graphene”, Appl. Phys. Lett. vol. 90, pp.
132122, 2007.
[14] H. Chen, V. Apalkov, and T. Chakraborty, “Fock-Darwin States of
Dirac Electrons in Graphene-Based Artificial Atoms”, Phys. Rev. Lett.
vol. 98, pp. 186803, 2007.
[15] A. Rycerz, j. Twozydlo, C. W. J. Beenakker, “Valley filter and valley
valve in graphene”, Nat. Phys. vol. 3, pp. 172-175, 2007.
[16] A. De Martino, L. Dell’ Anna, and R. Egger, “Magnetic Confinement of
Massless Dirac Fermions in Graphene”, Phys. Rev. Lett. vol. 98, pp.
066802, 2007.
[17] A. De Martino, L. Dell’ Anna, and R. Egger, “Magnetic barriers and
confinement of Dirac-Weyl quasiparticles in graphene”, Solid State
Comm. vol. 144, pp. 547-550, 2007.
[18] B. Wunsch, T. Stauber, and F. Guinea, “Electron-electron interactions
and charging effects in graphene quantum dots”, Phys. Rev. B vol. 77,
pp. 035316, 2008.
[19] A. Matulis and F. M. Peeters, “Quasibound states of quantum dots in
single and bilayer graphene”, Phys. Rev. B, vol. 77, pp. 115423, 2008.
[20] Z. Z. Zhang, K. Chang, and F. M. Peeters, “Tuning of energy levels and
optical properties of graphene quantum dots”, Phys. Rev. B. vol. 77, pp.
235411, 2008.
[21] P. Hewageegana and V. Apalkov, “Electron localization in graphene
quantum dots”, Phys. Rev. B vol. 77, pp. 245426, 2008.
[22] M. I. Kastnelson and F. Guinea, “Transport through evanescent waves
in ballistic graphene quantum dots”, Phys. Rev. B vol. 78, pp. 075417,
2008.
[23] S. Schnez, K. Ensslin, M. Sigrist, and T. Ihn “Analytic model of the
energy spectrum of a graphene quantum dot in a perpendicular
magnetic field”, Phys. Rev. B vol. 78, pp. 195427, 2008.
[24] J. H. Bardarson, M. Titov, and P. W. Brouwer, “ Electrostatic
Confinement of Electrons in an Integrable Graphene Quantum Dot”,
Phys. Rev. Lett. vol.102, pp. 226803, 2009.
[25] M. R. Masir, A. Matulis, and F. M. Peeters, “Quasi states of
Schrödinger and Dirac electrons in a magnetic quantum dot”, Phys.
Rev. B. vol. 79, pp. 155451, 2009.
[26] G. Giavaras, P. A. Maksym, and M. Roy, “Magnetic field induced
confinement-deconfinement transition in graphene quantum dots”, J.
Phys.: Condens. Matter vol. 21, pp. 102201, 2009.
[27] P. Recher, , J. Nilsson, G. Burkard, and B. Trauzettel, “Bound states and
magnetic field induced valley splitting in gate-tunable graphene
quantum dots”, Phys. Rev. B. vol.79, pp.085407, 2009.
[28] I. Romanovsky, C. Yannouleas, and U. Landman, “Edge states in
graphene quantum dots: Fractional quantum Hall effect analogies and
difference at zero magnetic field”, Phys. Rev. B vol. 79, pp. 075311,
2009.
[29] G. Giavaras and F. Nori, “Graphene quantum dots formed by a spatial
modulation of the Dirac gap”, Appl. Phys. Lett. vol. 97, pp. 243106,
2010.
[30] S. C. Kim, P. S. Park, and S.-R. Eric Yang, “States near Dirac points of
a rectangular graphene dot in a magnetic field”, Phys. Rev. B vol. 81,
pp. 085432, 2010.
[31] S. Maiti and A. V. Chubukov, “Transition to Landau levels in grahene
quantum dots”, Phys. Rev. B vol. 81, pp. 245411, 2010.
[32] M. Wimmer, A. R. Akhmerov, and F. Guinea, “Robustness of edge
states in graphene quantum dots”, Phys. Rev. B vol. 82, pp. 045409,
2010.
[33] G. Giavaras and F. Nori, “Dirac gap-induced graphene quantum dot in
an electronic potential”, Phys. Rev. B vol. 83, pp. 165427, 2011.
[34] M. Zarenia, A. Chaves, G. A. Farias, and F. M. Peeters, “Energy levels
of triangular and hexagonal graphene quantum dots: A comparative
study between the tight-binding and Dirac Equation approach”, Phys.
Rev. B. vol. 84, pp. 245403, 2011.
[35] Jia- Lin Zhu and Songyang Sun, “Dirac donor states controlled by
magnetic field in gapless and gapped graphene”, Phys. Rev. B. vol. 85,
pp. 035429, 2012.
[36] B. S. Kandemir and G. Ömer, “Variational calculations on the energy
levels of graphene quantum antidotes”, Eur. Phys. J. B vol. 86, pp. 299,
2013.
[37] C. Furtado, F. Moraes, A. M. de Carvalho, “Geometric phases in
graphitic cones”, Phys. Lett. A, vol. 372, pp. 5368, 2008.
[38] J. K. Pachos, “Manifestations of topological defects in graphene”,
Contemp. Phys. vol. 50, pp. 375-389, 2009.
[39] B. S. Kandemir and D. Akay “Tuning the pseudo-Zeeman splitting in
graphene cones by magnetic field”, Journal of Magnetism and Magnetic
Materials , vol. 384, pp. 101-105, 2015.
[40] F. de Juan, A. Cortijo, and M. A. H. Vozmedia, “Dislocations and
torsion in graphene and related systems”, Nucl. Phys. B, vol. 828(PM),
pp. 625-637, 2010.
[41] E. A. Kochetov, V. A. Osipov, and R. Pincak, “Electronic properties of
disclinated flexible membrane beyond the inextensional limit:
application to graphene”, J. Phys.: Condens. Matter, vol. 22(PM), pp.
395502, 2010.
[42] K. Bakke and C. Furtado “On the interaction of the Dirac oscillator with
the Aharonov-Casher system in the topological defect background”,
Annals of Phys., vol. 336, pp. 489-504, 2013.