Abstract: Capacity and efficiency of any refrigerating system
diminish rapidly as the difference between the evaporating and
condensing temperature is increased by a reduction in the evaporator
temperature. The single stage vapour compression refrigeration
system using various refrigerants are limited to an evaporator
temperature of -40 0C. Below temperature of -40 0C the either
cascade refrigeration system or multi stage vapour compression
system is employed. Present work describes thermal design of
condenser (HTS), cascade condenser and evaporator (LTS) of
R404A-R508B and R410A-R23 cascade refrigeration system. Heat
transfer area of condenser, cascade condenser and evaporator for
both systems are compared and the effect of condenser and
evaporator temperature on heat-transfer area for both systems is
studied under same operating condition. The results shows that the
required heat-transfer area of condenser and cascade condenser for
R410A-R23 cascade system is lower than the R404A-R508B cascade
system but heat transfer area of evaporator is similar for both the
system. The heat transfer area of condenser and cascade condenser
decreases with increase in condenser temperature (Tc), whereas the
heat transfer area of cascade condenser and evaporator increases with
increase in evaporator temperature (Te).
Abstract: Stuck-pipe in drilling operations is one of the most
pressing and expensive problems in the oil industry. This paper
describes a computational simulation and an experimental study of
the hydrodynamic vibrator, which may be used for liquidation of
stuck-pipe problems during well drilling. The work principle of the
vibrator is based upon the known phenomena of Vortex Street of
Karman and the resulting generation of vibrations. We will discuss
the computational simulation and experimental investigations of
vibrations in this device. The frequency of the vibration parameters
has been measured as a function of the wide range Reynolds Number.
The validity of the computational simulation and of the assumptions
on which it is based has been proved experimentally. The
computational simulation of the vibrator work and its effectiveness
was carried out using FLUENT software. The research showed high
degree of congruence with the results of the laboratory tests and
allowed to determine the effect of the granular material features upon
the pipe vibration in the well. This study demonstrates the potential
of using the hydrodynamic vibrator in a well drilling system.
Abstract: A dynamic stall-corrected Blade Element-Momentum algorithm based on a hybrid polar is validated through the comparison with Sandia experimental measurements on a 5-m diameter wind turbine of Troposkien shape. Different dynamic stall models are evaluated. The numerical predictions obtained using the extended aerodynamic coefficients provided by both Sheldal and Klimas and Raciti Castelli et al. are compared to experimental data, determining the potential of the hybrid database for the numerical prediction of vertical-axis wind turbine performances.
Abstract: The existence of maximal durations drastically modifies the performance evaluation in Discrete Event Systems (DES). The same particularity may be found on systems where the associated constraints do not concern the time. For example weight measures, in chemical industry, are used in order to control the quantity of consumed raw materials. This parameter also takes a fundamental part in the product quality as the correct transformation process is based upon a given percentage of each essence. Weight regulation therefore increases the global productivity of the system by decreasing the quantity of rejected products. In this paper we present an approach based on mixing different characteristics theories, the fuzzy system and Petri net system to describe the behaviour. An industriel application on a tobacco manufacturing plant, where the critical parameter is the weight is presented as an illustration.
Abstract: In this study, optimization is carried out to find the optimized design of a foam-filled column for the best Specific Energy Absorption (SEA) and Crush Force Efficiency (CFE). In order to maximize SEA, the optimization gives the value of 2.3 for column thickness and 151.7 for foam length. On the other hand to maximize CFE, the optimization gives the value of 1.1 for column thickness and 200 for foam length. Finite Element simulation is run by using this value and the SEA and CFE obtained 1237.76 J/kg and 0.92.
Abstract: Selection of a project among a set of possible
alternatives is a difficult task that the decision maker (DM) has to
face. In this paper, by using a fuzzy TOPSIS technique we propose a
new method for a project selection problem. After reviewing four
common methods of comparing investment alternatives (net present
value, rate of return, benefit cost analysis and payback period) we
use them as criteria in a TOPSIS technique. First we calculate the
weight of each criterion by a pairwise comparison and then we utilize
the improved TOPSIS assessment for the project selection.
Abstract: An original DEA model is to evaluate each DMU
optimistically, but the interval DEA Model proposed in this paper
has been formulated to obtain an efficiency interval consisting of
Evaluations from both the optimistic and the pessimistic view points.
DMUs are improved so that their lower bounds become so large as to
attain the maximum Value one. The points obtained by this method
are called ideal points. Ideal PPS is calculated by ideal of efficiency
DMUs. The purpose of this paper is to rank DMUs by this ideal PPS.
Finally we extend the efficiency interval of a DMU under variable
RTS technology.