Pattern Classification of Back-Propagation Algorithm Using Exclusive Connecting Network

The objective of this paper is to a design of pattern classification model based on the back-propagation (BP) algorithm for decision support system. Standard BP model has done full connection of each node in the layers from input to output layers. Therefore, it takes a lot of computing time and iteration computing for good performance and less accepted error rate when we are doing some pattern generation or training the network. However, this model is using exclusive connection in between hidden layer nodes and output nodes. The advantage of this model is less number of iteration and better performance compare with standard back-propagation model. We simulated some cases of classification data and different setting of network factors (e.g. hidden layer number and nodes, number of classification and iteration). During our simulation, we found that most of simulations cases were satisfied by BP based using exclusive connection network model compared to standard BP. We expect that this algorithm can be available to identification of user face, analysis of data, mapping data in between environment data and information.

Mobility Management Architecture for Transport System

Next generation wireless/mobile networks will be IP based cellular networks integrating the internet with cellular networks. In this paper, we propose a new architecture for a high speed transport system and a mobile management protocol for mobile internet users in a transport system. Existing mobility management protocols (MIPv6, HMIPv6) do not consider real world fast moving wireless hosts (e.g. passengers in a train). For this reason, we define a virtual organization (VO) and proposed the VO architecture for the transport system. We also classify mobility as VO mobility (intra VO) and macro mobility (inter VO). Handoffs in VO are locally managed and transparent to the CH while macro mobility is managed with Mobile IPv6. And, from the features of the transport system, such as fixed route and steady speed, we deduce the movement route and the handoff disruption time of each handoff. To reduce packet loss during handoff disruption time, we propose pre-registration scheme using pre-registration. Moreover, the proposed protocol can eliminate unnecessary binding updates resulting from sequence movement at high speed. The performance evaluations demonstrate our proposed protocol has a good performance at transport system environment. Our proposed protocol can be applied to the usage of wireless internet on the train, subway, and high speed train.

Analytical Model of Connection Establishment Duration Calculation in Wireless Networks

It is important to provide possibility of so called “handover" for the mobile subscriber from GSM network to Wi-Fi network and back. To solve specified problem it is necessary to estimate connection time between base station and wireless access point. Difficulty to estimate this parameter is that it doesn-t described in specifications of the standard and, hence, no recommended value is given. In this paper, the analytical model is presented that allows the estimating connection time between base station and IEEE 802.11 access point.

Effect of Electric Field Amplitude on Electrical Fatigue Behavior of Lead Zirconate Titanate Ceramic

Fatigue behaviors of Lead Zirconate Titanate (PZT) ceramics under different amplitude of bipolar electrical loads have been investigated. Fatigue behavior is represented by the change of hysteresis loops and remnant polarization. Three levels of electrical load amplitudes (1.00, 1.25 and 1.50 kV /mm) were applied in this experimental. It was found that the remnant polarization decreased significantly with the number of loading cycles. The degree of fatigue degradation depends on the amplitude of electric field. The higher amplitude exhibits the greater fatigue degradation.

Pseudo Last Useful Instant Queuing Strategy for Handovers in Low Earth Orbit Mobile Satellite Networks

This paper presents an alternative strategy of queuing handover called Pseudo Last Useful Instant PLUI scheme for Low Earth Orbit Mobile Satellite Systems LEO MSSs. The PLUI scheme uses the same approach as the Last Useful Instant LUI scheme previously proposed in literature, with less complex implementation. Simulation tests were carried out using Dynamic Channel Allocation DCA in order to evaluate the performance of this scheme and also an analytical approach has been presented to allow the performance evaluation of Fixed Channel Allocation FCA, with different handover queuing disciplines. The results show that performances achieved by the proposed strategy are close to those achieved using the LUI scheme.

Signal Driven Sampling and Filtering a Promising Approach for Time Varying Signals Processing

The mobile systems are powered by batteries. Reducing the system power consumption is a key to increase its autonomy. It is known that mostly the systems are dealing with time varying signals. Thus, we aim to achieve power efficiency by smartly adapting the system processing activity in accordance with the input signal local characteristics. It is done by completely rethinking the processing chain, by adopting signal driven sampling and processing. In this context, a signal driven filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by analysing the input signal local variations. Thus, it correlates the processing activity with the signal variations. It leads towards a drastic computational gain of the proposed technique compared to the classical one.

Resistor-less Current-mode Universal Biquad Filter Using CCTAs and Grounded Capacitors

This article presents a current-mode universal biquadratic filter. The proposed circuit can apparently provide standard functions of the biquad filter: low-pass, high-pass, bandpass, band-reject and all-pass functions. The circuit uses 4 current controlled transconductance amplifiers (CCTAs) and 2 grounded capacitors. In addition, the pole frequency and quality factor can be adjusted by electronic method by adjusting the bias currents of the CCTA. The proposed circuit uses only grounded capacitors without additional external resistors, the proposed circuit is considerably appropriate to further developing into an integrated circuit. The results of PSPICE simulation program are corresponding to the theoretical analysis.

Bond Graph and Bayesian Networks for Reliable Diagnosis

Bond Graph as a unified multidisciplinary tool is widely used not only for dynamic modelling but also for Fault Detection and Isolation because of its structural and causal proprieties. A binary Fault Signature Matrix is systematically generated but to make the final binary decision is not always feasible because of the problems revealed by such method. The purpose of this paper is introducing a methodology for the improvement of the classical binary method of decision-making, so that the unknown and identical failure signatures can be treated to improve the robustness. This approach consists of associating the evaluated residuals and the components reliability data to build a Hybrid Bayesian Network. This network is used in two distinct inference procedures: one for the continuous part and the other for the discrete part. The continuous nodes of the network are the prior probabilities of the components failures, which are used by the inference procedure on the discrete part to compute the posterior probabilities of the failures. The developed methodology is applied to a real steam generator pilot process.

Error Rate Probability for Coded MQAM with MRC Diversity in the Presence of Cochannel Interferers over Nakagami-Fading Channels

Exact expressions for bit-error probability (BEP) for coherent square detection of uncoded and coded M-ary quadrature amplitude modulation (MQAM) using an array of antennas with maximal ratio combining (MRC) in a flat fading channel interference limited system in a Nakagami-m fading environment is derived. The analysis assumes an arbitrary number of independent and identically distributed Nakagami interferers. The results for coded MQAM are computed numerically for the case of (24,12) extended Golay code and compared with uncoded MQAM by plotting error probabilities versus average signal-to-interference ratio (SIR) for various values of order of diversity N, number of distinct symbols M, in order to examine the effect of cochannel interferers on the performance of the digital communication system. The diversity gains and net gains are also presented in tabular form in order to examine the performance of digital communication system in the presence of interferers, as the order of diversity increases. The analytical results presented in this paper are expected to provide useful information needed for design and analysis of digital communication systems with space diversity in wireless fading channels.

Comparison of an Interior Mounted Permanent Magnet Synchronous Generator with a Synchronous Reluctance Generator for a Wind Application

This article presents a performance comparison of an interior mounted permanent magnet synchronous generator (IPMSG) with a synchronous reluctance generator (SynRG) with the same size for a wind application. It is found that using the same geometrical dimensions, a SynRG can convert 74 % of the power that an IPMSG can convert, while it has 80% of the IPMSG weight. Moreover it is found that the efficieny for the IMPSG is 99% at rated power compared to 98.7% for the SynRG.

Correlation between Capacitance and Dissipation Factor used for Assessment of Stator Insulation

Measurements of capacitance C and dissipation factor tand of the stator insulation system provide useful information about internal defects within the insulation. The index k is defined as the proportionality constant between the changes at high voltage of capacitance DC and of the dissipation factor Dtand . DC and Dtand values were highly correlated when small flat defects were within the insulation and that correlation was lost in the presence of large narrow defects like electrical treeing. The discrimination between small and large defects is made resorting to partial discharge PD phase angle analysis. For the validation of the results, C and tand measurements were carried out in a 15MVA 4160V steam turbine turbogenerator placed in a sugar mill. In addition, laboratory test results obtained by other authors were analyzed jointly. In such laboratory tests, model coil bars subjected to thermal cycling resulted highly degraded and DC and Dtand values were not correlated. Thus, the index k could not be calculated.

Robust Power System Stabilizer Design Using Particle Swarm Optimization Technique

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to design a robust power system stabilizer (PSS). The design problem of the proposed controller is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. Further, all the simulations results are compared with a conventionally designed power system stabilizer to show the superiority of the proposed design approach.

RADAR Imaging to Develop an Enhanced Fog Vision System for Collision Avoidance

The scattering effect of light in fog improves the difficulty in visibility thus introducing disturbances in transport facilities in urban or industrial areas causing fatal accidents or public harassments, therefore, developing an enhanced fog vision system with radio wave to improvise the way outs of these severe problems is really a big challenge for researchers. Series of experimental studies already been done and more are in progress to know the weather effect on radio frequencies for different ranges. According to Rayleigh scattering Law, the propagating wavelength should be greater than the diameter of the particle present in the penetrating medium. Direct wave RF signal thus have high chance of failure to work in such weather for detection of any object. Therefore an extensive study was required to find suitable region in the RF band that can help us in detecting objects with proper shape. This paper produces some results on object detection using 912 MHz band with successful detection of the persistence of any object coming under the trajectory of a vehicle navigating in indoor and outdoor environment. The developed images are finally transformed to video signal to enable continuous monitoring.

Simulation of Voltage Controlled Tunable All Pass Filter Using LM13700 OTA

In recent years Operational Transconductance Amplifier based high frequency integrated circuits, filters and systems have been widely investigated. The usefulness of OTAs over conventional OP-Amps in the design of both first order and second order active filters are well documented. This paper discusses some of the tunability issues using the Matlab/Simulink® software which are previously unreported for any commercial OTA. Using the simulation results two first order voltage controlled all pass filters with phase tuning capability are proposed.

An Intelligent Cascaded Fuzzy Logic Based Controller for Controlling the Room Temperature in Hydronic Heating System

Heating systems are a necessity for regions which brace extreme cold weather throughout the year. To maintain a comfortable temperature inside a given place, heating systems making use of- Hydronic boilers- are used. The principle of a single pipe system serves as a base for their working. It is mandatory for these heating systems to control the room temperature, thus maintaining a warm environment. In this paper, the concept of regulation of the room temperature over a wide range is established by using an Adaptive Fuzzy Controller (AFC). This fuzzy controller automatically detects the changes in the outside temperatures and correspondingly maintains the inside temperature to a palatial value. Two separate AFC's are put to use to carry out this function: one to determine the quantity of heat needed to reach the prospective temperature required and to set the desired temperature; the other to control the position of the valve, which is directly proportional to the error between the present room temperature and the user desired temperature. The fuzzy logic controls the position of the valve as per the requirement of the heat. The amount by which the valve opens or closes is controlled by 5 knob positions, which vary from minimum to maximum, thereby regulating the amount of heat flowing through the valve. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.

A Balanced Cost Cluster-Heads Selection Algorithm for Wireless Sensor Networks

This paper focuses on reducing the power consumption of wireless sensor networks. Therefore, a communication protocol named LEACH (Low-Energy Adaptive Clustering Hierarchy) is modified. We extend LEACHs stochastic cluster-head selection algorithm by a modifying the probability of each node to become cluster-head based on its required energy to transmit to the sink. We present an efficient energy aware routing algorithm for the wireless sensor networks. Our contribution consists in rotation selection of clusterheads considering the remoteness of the nodes to the sink, and then, the network nodes residual energy. This choice allows a best distribution of the transmission energy in the network. The cluster-heads selection algorithm is completely decentralized. Simulation results show that the energy is significantly reduced compared with the previous clustering based routing algorithm for the sensor networks.

An Efficient Classification Method for Inverse Synthetic Aperture Radar Images

This paper proposes an efficient method to classify inverse synthetic aperture (ISAR) images. Because ISAR images can be translated and rotated in the 2-dimensional image place, invariance to the two factors is indispensable for successful classification. The proposed method achieves invariance to translation and rotation of ISAR images using a combination of two-dimensional Fourier transform, polar mapping and correlation-based alignment of the image. Classification is conducted using a simple matching score classifier. In simulations using the real ISAR images of five scaled models measured in a compact range, the proposed method yields classification ratios higher than 97 %.

Image Segmentation Using Suprathreshold Stochastic Resonance

In this paper a new concept of partial complement of a graph G is introduced and using the same a new graph parameter, called completion number of a graph G, denoted by c(G) is defined. Some basic properties of graph parameter, completion number, are studied and upperbounds for completion number of classes of graphs are obtained , the paper includes the characterization also.

Elimination Noise by Adaptive Wavelet Threshold

Due to some reasons, observed images are degraded which are mainly caused by noise. Recently image denoising using the wavelet transform has been attracting much attention. Waveletbased approach provides a particularly useful method for image denoising when the preservation of edges in the scene is of importance because the local adaptivity is based explicitly on the values of the wavelet detail coefficients. In this paper, we propose several methods of noise removal from degraded images with Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Modified Bayes Shrink and Normal Shrink). The proposed thresholds are simple and adaptive to each subband because the parameters required for estimating the threshold depend on subband data. Experimental results show that the proposed thresholds remove noise significantly and preserve the edges in the scene.

Bridging the Gap Between CBR and VBR for H264 Standard

This paper provides a flexible way of controlling Variable-Bit-Rate (VBR) of compressed digital video, applicable to the new H264 video compression standard. The entire video sequence is assessed in advance and the quantisation level is then set such that bit rate (and thus the frame rate) remains within predetermined limits compatible with the bandwidth of the transmission system and the capabilities of the remote end, while at the same time providing constant quality similar to VBR encoding. A process for avoiding buffer starvation by selectively eliminating frames from the encoded output at times when the frame rate is slow (large number of bits per frame) will be also described. Finally, the problem of buffer overflow will be solved by selectively eliminating frames from the received input to the decoder. The decoder detects the omission of the frames and resynchronizes the transmission by monitoring time stamps and repeating frames if necessary.