Smart Motion

Austenite and Martensite indicate the phases of solids undergoing phase transformation which we usually associate with materials and not with living organisms. This article provides an overview of bacterial proteins and structures that are undergoing phase transformation and suggests its probable effect on mechanical behavior. The context is mainly within the role of phase transformations occurring in the flagellum of bacteria. The current knowledge of molecular mechanism leading to phase variation in living organisms is reviewed. Since in bacteria, each flagellum is driven by a separate motor, similarity to a Differential drive in case of four-wheeled vehicles is suggested. It also suggests the application of the mechanism in which bacteria changes its direction of movement to facilitate single point turning of a multi-wheeled vehicle. Finally, examples are presented to illustrate that the motion due to phase transformation of flagella in bacteria can start a whole new research on motion mechanisms.

Effects of PEG and NaCl Stress on Two Cultivars of Corn (Zea mays L.) at Germination and Early Seedling Stages

To study on effect of PEG and NaCl stress on germination and early seedling stages on two cultivar of corn, two separated experiment were laid out at physiology laboratory, faculty of Agriculture, Razi University, Kermanshah, Iran in 2009. This investigation was performed as factorial experiment under Complete Randomized Design (CRD) with three replications. Cultivar factor contains of two varieties (sweet corn SC403 and Flint corn SC704) and five levels of stress (0, -2, -4, -6 and -8 bar). The principal aim of current study was to compare the two varieties of maize in relative to the stress conditions. Results indicated that significant decrease was observed in percentage of germination, germination rate, length of radicle and plumule and radicle and plumule dry matter. On the basis of the results, NaCl as compared with PEG had more effect on germination and early seedling stage and sweet corn had more resistant than flint corn in both stress conditions.

Comparison of Vermicompost and Vermiwash Bio-Fertilizers from Vermicomposting Waste Corn Pulp

Vermicomposting is the conversion of organic waste into bio-fertilizers through the action of earthworm. This technology is widely used for organic solid waste management. Waste corn pulp blended with cow dung manure was vermicomposted over 30 days using Eisenia fetida earthworms species. pH, temperature, moisture content, and electrical conductivity were daily monitored. The feedstock, vermicompost and vermiwash were analyzed for nutrient composition. The average temperature and moisture content in the vermi-reactor was 22.5°C and 42.5% respectively. The vermicompost and vermiwash had an almost neutral pH whilst the electrical conductivity was 21% higher in the vermicompost. The nitrogen and potassium content was 57% and 79.6% richer in the vermicompost respectively compared to the vermiwash. However, the vermiwash was 84% richer in phosphorous as compared to vermicompost. Furthermore, the vermiwash was 89.1% and 97.6% richer in Ca and Mg respectively and was 97.8% richer in Na salts compared to the vermicompost. The vermiwash also indicated a significantly higher amount of micronutrients. Both bio-fertilizers were rich in nutrients specification for fertilizers.

Optimization of Enzymatic Activities in Malting of Oat

Malting is usually carried out on intact barley seed, while hull is still attached to it. In this study, oat grain with and without hull was subjected to controlled germination to optimize its enzymes activity, in such a way that lipase has the lowest and α- amylase and proteinase the highest activities. Since pH has a great impact on the activity of the enzymes, the pH of germination media was set up to 3 to 8. In dehulled oats, lipase and α-amylase had the lowest and highest activities in pHs 3 and 6, respectively whereas the highest proteinase activity was evidenced at pH 7 and 4 in the oats with and without hull respectively. While measurements indicated that the effect of hull on the enzyme activities particularly in lipase and amylase at each level of the pH are significantly different, the best results were obtained in those samples in which their hull had been removed. However, since the similar lipase activity in germinated dehulled oat were recorded at the pHs 4 and 5, therefore it was concluded that pH 5 in dehulled oat seed may provide the optimum enzyme activity for all the enzymes.

A Novel Approach for Protein Classification Using Fourier Transform

Discovering new biological knowledge from the highthroughput biological data is a major challenge to bioinformatics today. To address this challenge, we developed a new approach for protein classification. Proteins that are evolutionarily- and thereby functionally- related are said to belong to the same classification. Identifying protein classification is of fundamental importance to document the diversity of the known protein universe. It also provides a means to determine the functional roles of newly discovered protein sequences. Our goal is to predict the functional classification of novel protein sequences based on a set of features extracted from each protein sequence. The proposed technique used datasets extracted from the Structural Classification of Proteins (SCOP) database. A set of spectral domain features based on Fast Fourier Transform (FFT) is used. The proposed classifier uses multilayer back propagation (MLBP) neural network for protein classification. The maximum classification accuracy is about 91% when applying the classifier to the full four levels of the SCOP database. However, it reaches a maximum of 96% when limiting the classification to the family level. The classification results reveal that spectral domain contains information that can be used for classification with high accuracy. In addition, the results emphasize that sequence similarity measures are of great importance especially at the family level.

Irrigation Scheduling for Maize and Indian-mustard based on Daily Crop Water Requirement in a Semi- Arid Region

Maize and Indian mustard are significant crops in semi-arid climate zones of India. Improved water management requires precise scheduling of irrigation, which in turn requires an accurate computation of daily crop evapotranspiration (ETc). Daily crop evapotranspiration comes as a product of reference evapotranspiration (ET0) and the growth stage specific crop coefficients modified for daily variation. The first objective of present study is to develop crop coefficients Kc for Maize and Indian mustard. The estimated values of Kc for maize at the four crop growth stages (initial, development, mid-season, and late season) are 0.55, 1.08, 1.25, and 0.75, respectively, and for Indian mustard the Kc values at the four growth stages are 0.3, 0.6, 1.12, and 0.35, respectively. The second objective of the study is to compute daily crop evapotranspiration from ET0 and crop coefficients. Average daily ETc of maize varied from about 2.5 mm/d in the early growing period to > 6.5 mm/d at mid season. The peak ETc of maize is 8.3 mm/d and it occurred 64 days after sowing at the reproductive growth stage when leaf area index was 4.54. In the case of Indian mustard, average ETc is 1 mm/d at the initial stage, >1.8 mm/d at mid season and achieves a peak value of 2.12 mm/d on 56 days after sowing. Improved schedules of irrigation have been simulated based on daily crop evapo-transpiration and field measured data. Simulation shows a close match between modeled and field moisture status prevalent during crop season.

Self – Tuning Method of Fuzzy System: An Application on Greenhouse Process

The approach proposed here is oriented in the direction of fuzzy system for the analysis and the synthesis of intelligent climate controllers, the simulation of the internal climate of the greenhouse is achieved by a linear model whose coefficients are obtained by identification. The use of fuzzy logic controllers for the regulation of climate variables represents a powerful way to minimize the energy cost. Strategies of reduction and optimization are adopted to facilitate the tuning and to reduce the complexity of the controller.

Energy Evaluation and Utilization of Cassava Peel for Lactating Dairy Cows

The experiment was then conducted to investigate the effect of cassava peel addition in the concentrate on the performance of lactating dairy cows. Twenty four Holstein Friesian crossbred (>87.5% Holstein Friesian) lactating dairy cows in mid lactation; averaging 12.2+2.1 kg of milk, 119+45 days in milk, 44.1+6.2 months old and 449+33 kg live weight, were stratified for milk yield, days in milk, age, stage of lactation and body weight, and then randomly allocated to three treatment groups. The first, second and third groups were fed concentrates containing the respective cassava peel, 0, 20 and 40%. All cows were fed ad libitum corn silage and freely access to clean water. Dry matter intake, 4%FCM, milk composition and body weight change were affected (P

3D Locomotion and Fractal Analysis of Goldfish for Acute Toxicity Bioassay

Biological reactions of individuals of a testing animal to toxic substance are unique and can be used as an indication of the existing of toxic substance. However, to distinguish such phenomenon need a very complicate system and even more complicate to analyze data in 3 dimensional. In this paper, a system to evaluate in vitro biological activities to acute toxicity of stochastic self-affine non-stationary signal of 3D goldfish swimming by using fractal analysis is introduced. Regular digital camcorders are utilized by proposed algorithm 3DCCPC to effectively capture and construct 3D movements of the fish. A Critical Exponent Method (CEM) has been adopted as a fractal estimator. The hypothesis was that the swimming of goldfish to acute toxic would show the fractal property which related to the toxic concentration. The experimental results supported the hypothesis by showing that the swimming of goldfish under the different toxic concentration has fractal properties. It also shows that the fractal dimension of the swimming related to the pH value of FD Ôëê 0.26pH + 0.05. With the proposed system, the fish is allowed to swim freely in all direction to react to the toxic. In addition, the trajectories are precisely evaluated by fractal analysis with critical exponent method and hence the results exhibit with much higher degree of confidence.

Fe3O4 and Fe3O4@Au Nanoparticles: Synthesis and Functionalisation for Biomolecular Attachment

The use of magnetic and magnetic/gold core/shell nanoparticles in biotechnology or medicine has shown good promise due to their hybrid nature which possesses superior magnetic and optical properties. Some of these potential applications include hyperthermia treatment, bio-separations, diagnostics, drug delivery and toxin removal. Synthesis refinement to control geometric and magnetic/optical properties, and finding functional surfactants for biomolecular attachment, are requirements to meet application specifics. Various high-temperature preparative methods were used for the synthesis of iron oxide and gold-coated iron oxide nanoparticles. Different surface functionalities, such as 11-aminoundecanoic and 11-mercaptoundecanoic acid, were introduced on the surface of the particles to facilitate further attachment of biomolecular functionality and drug-like molecules. Nanoparticle thermal stability, composition, state of aggregation, size and morphology were investigated and the results from techniques such as Fourier Transform-Infra Red spectroscopy (FT-IR), Ultraviolet visible spectroscopy (UV-vis), Transmission Electron Microscopy (TEM) and thermal analysis are discussed.

Preliminary Study on Determining Stem Diameter Variations of Sympodial Orchid

Changes in stem diameter of orchid plants were investigated in a control growing climate. Previous studies have focused on stem diameter in relation to plant water on terrestrial plants in order to schedule the irrigation. The objective of this work was to evaluate the ability of the strain gauges to capture changes in the epiphytes plant stem. Experiments were carried out by using the sympodial orchid, Dendrobium Sonia in a stressed condition. From the findings, the sensor can detect changes in the plant stem and the result can easily be used as a reference for further studies for the development of a proper watering system.

Effect of Recombinant Human Follicle Stimulating Hormone on Meiotic Competence of In Vitro Grown Nili Ravi Buffalo Oocytes

In the present study, the response of Nili Ravi buffalo oocytes to recombinant human follicle stimulating hormone (rhFSH) (Organon) on meiotic maturation in vitro was examined. Oocytes were matured in vitro in medium containing either 0 or 0.05 IU/ ml rhFSH and the stage of nuclear maturation recorded after 24 hours. The percentage of oocytes in the control group undergoing germinal vesicle breakdown (GVBD) observed after 24 hours of culture was 29 % whereas as in rhFSH group the percentage was 10 % were at this stage (P< 0.001).Thus in the presence of rhFSH, a significantly greater number of oocytes had progressed to the more advanced stages of nuclear maturation. Indeed, the maturation of GV (Germinal Vesicle) stage oocytes to the metaphase II (M II) stage after 24 hours was significantly (P< 0.0001) increased by the addition of rhFSH (82 % VS 47 %). The percentage of degenerated oocytes after 24 hours of culture was 24 % in control group, whereas in rhFSH group the percentage was 8 % after 24 hours. Degeneration of the oocytes after 24 hours was not significantly (P = 0. 9361) decreased.

Conservation Techniques for Soil Erosion Control in Tobacco-Based Farming System at Steep Land Areas of Progo Hulu Subwatershed, Central Java, Indonesia

This research was aimed at determining the impact of conservation techniques including bench terrace, stone terrace, mulching, grass strip and intercropping on soil erosion at tobacco-based farming system at Progo Hulu subwatershed, Central Java, Indonesia. Research was conducted from September 2007 to September 2009, located at Progo Hulu subwatershed, Central Java, Indonesia. Research site divided into 27 land units, and experimental fields were grouped based on the soil type and slope, ie: 30%, 45% and 70%, with the following treatments: 1) ST0= stone terrace (control); 2) ST1= stone terrace + Setaria spacelata grass strip on a 5 cm height dike at terrace lips + tobacco stem mulch with dose of 50% (7 ton/ ha); 3) ST2= stone terrace + Setaria spacelata grass strip on a 5 cm height dike at terrace lips + tobacco stem mulch with dose of 100% (14 ton/ ha); 4) ST3= stone terrace + tobacco and red bean intercropping + tobacco stem mulch with dose of 50% (7 ton/ ha). 5) BT0= bench terrace (control); 6) BT1= bench terrace + Setaria spacelata grass strip at terrace lips + tobacco stem mulch with dose of 50% (7 ton/ ha); 7) BT2= bench terrace + Setaria spacelata grass strip at terrace lips + tobacco stem mulch with dose of 100% (14 ton/ ha); 8) BT3= bench terrace + tobacco and red bean intercropping + tobacco stem mulch with dose of 50% (7 ton/ ha). The results showed that the actual erosion rates of research site were higher than that of tolerance erosion with mean value 89.08 ton/ha/year and 33.40 ton/ha/year, respectively. These resulted in 69% of total research site (5,119.15 ha) highly degraded. Conservation technique of ST2 was the most effective in suppressing soil erosion, by 42.87%, following with BT2 as much 30.63%. Others suppressed erosion only less than 21%.

Molecular Dynamics and Circular Dichroism Studies on Aurein 1.2 and Retro Analog

Aurein 1.2 is a 13-residue amphipathic peptide with antibacterial and anticancer activity. Aurein1.2 and its retro analog were synthesized to study the activity of the peptides in relation to their structure. The antibacterial test result showed the retro-analog is inactive. The secondary structural analysis by CD spectra indicated that both of the peptides at TFE/Water adopt alpha-helical conformation. MD simulation was performed on aurein 1.2 and retro-analog in water and TFE in order to analyse the factors that are involved in the activity difference between retro and the native peptide. The simulation results are discussed and validated in the light of experimental data from the CD experiment. Both of the peptides showed a relatively similar pattern for their hydrophobicity, hydrophilicity, solvent accessible surfaces, and solvent accessible hydrophobic surfaces. However, they showed different in directions of dipole moment of peptides. Also, Our results further indicate that the reversion of the amino acid sequence affects flexibility .The data also showed that factors causing structural rigidity may decrease the activity. Consequently, our finding suggests that in the case of sequence-reversed peptide strategy, one has to pay attention to the role of amino acid sequence order in making flexibility and role of dipole moment direction in peptide activity. KeywordsAntimicrobial peptides, retro, molecular dynamic, circular dichroism.

Topical Delivery of Thymidine Dinucleotide to Induce p53 Generation in the Skin by Elastic Liposome

Transcription factor p53 has a powerful tumor suppressing function that is associated with many cancers. However, p53 of the molecular weight was higher make the limitation across to skin or cell membrane. Thymidine dinucleotide (pTT), an oligonucleotide, can activate the p53 transcription factor. pTT is a hydrophilic and negative charge oligonucleotide, which delivery in to cell membrane need an appropriate carrier. The aim of this study was to improve the bioavailability of the nucleotide fragment, thymidine dinucleotide (pTT), using elasic liposome carriers to deliver the drug into the skin. The study demonstrate that dioleoylphosphocholine (DOPC) incorporated with sodium cholate at molar ratio 1:1 can archived the particle size about 220 nm. This elastic liposome could penetration through skin from stratum corneum to whole epidermis by confocal laser scanning microscopy (CLSM). Moreover, we observed the the slight increase in generation of p53 by western blot.

The Effect of Sowing Time on Phytopathogenic Characteristics and Yield of Sunflower Hybrids

The field research was carried out at the Látókép AGTC KIT research area of the University of Debrecen in Eastern-Hungary, on the area of the aeolain loess of the Hajdúság. We examined the effects of the sowing time on the phytopathogenic characteristics and yield production by applying various fertilizer treatments on two different sunflower genotypes (NK Ferti, PR64H42) in 2012 and 2013. We applied three different sowing times (early, optimal, late) and two different treatment levels of fungicides (control = no fungicides applied, double fungicide protection). During our investigations, the studied cropyears were of different sowing time optimum in terms of yield amount (2012: early, 2013: average). By Pearson’s correlation analysis, we have found that delaying the sowing time pronouncedly decreased the extent of infection in both crop years (Diaporthe: r=0.663**, r=0.681**, Sclerotinia: r=0.465**, r=0.622**). The fungicide treatment not only decreased the extent of infection, but had yield increasing effect too (2012: r=0.498**, 2013: r=0.603**). In 2012, delaying of the sowing time increased (r=0.600**), but in 2013, it decreased (r= 0.356*) the yield amount.

Estimation of Groundwater Recovery by Recharge in the Agricultural Area

The Kumamoto area, Kyushu, Japan has 1,041km2 in area and about 1milion in population. This area is a greatest area in Japan which depends on groundwater for all of drinking water. Quantity of this local groundwater use is about 200MCM during the year. It is understood that the main recharging area of groundwater exist in the rice field zone which have high infiltrate height ahead of 100mm/ day of the irrigated water located in the middle area of the Shira-River Basin. However, by decrease of the paddy-rice planting area by urbanization and an acreage reduction policy, the groundwater income and expenditure turned worse. Then Kumamoto city and four companies expended financial support to increase recharging water to underground by ponded water in the field from 2004. In this paper, the author reported the situation of recovery of groundwater by recharge and estimates the efficiency of recharge by statistical method.

Enhance Halorespiration in Rhodopseudomonas palustris with Cytochrome P450cam System from Pseudomonas putida

To decompose organochlorides by bioremediation, co-culture biohydrogen producer and dehalogenation microorganisms is a useful method. In this study, we combined these two characteristics from a biohydrogen producer, Rhodopseudomonas palustris, and a dehalogenation microorganism, Pseudomonas putida, to enchance halorespiration in R. palustris. The genes encoding cytochrome P450cam system (camC, camA, and camB) from P. putida were expressed in R. palustris with designated expression plasmid. All tested strains were cultured to log phase then presented pentachloroethane (PCA) in media. The vector control strain could degrade PCA about 78% after 16 hours, however, the cytochrome P450cam system expressed strain, CGA-camCAB, could completely degrade PCA in 12 hours. While taking chlorinated aromatic, 3-chlorobenzoate, as sole carbon source or present benzoate as co-substrate, CGA-camCAB presented faster growth rate than vector control strain.

Analysis of Food Security Situation among Nigerian Rural Farmers

This paper analysed the food security situation among Nigerian rural farmers. Data collected on 202 rural farmers from Benue State were analysed using descriptive and inferential statistics. The study revealed that majority of the respondents (60.83%) had medium dietary diversity. Furthermore, household daily calorie requirement for the food secure households was 10,723 and the household daily calorie consumption was 12,598, with a surplus index of 0.04. The food security index was 1.16. The Household daily per capita calorie consumption was 3,221.2. For the food insecure households, the household daily calorie requirement was 20,213 and the household daily calorie consumption was 17,393. The shortfall index was 0.14. The food security index was 0.88. The Household daily per capita calorie consumption was 2,432.8. The most commonly used coping strategies during food stress included intercropping (99.2%), reliance on less preferred food (98.1%), limiting portion size at meal times (85.8%) and crop diversification (70.8%).

Application of Quality Index Method, Texture Measurements and Electronic Nose to Assess the Freshness of Atlantic Herring (Clupea harengus) Stored in Ice

Atlantic herring (Clupea harengus) is an important commercial fish and shows to be more and more demanded for human consumption. Therefore, it is very important to find good methods for monitoring the freshness of the fish in order to keep it in the best quality for human consumption. In this study, the fish was stored in ice up to 2 weeks. Quality changes during storage were assessed by the Quality Index Method (QIM), quantitative descriptive analysis (QDA) and Torry scheme, by texture measurements: puncture tests and Texture Profile Analysis (TPA) tests on texture analyzer TA.XT2i, and by electronic nose (e-nose) measurements using FreshSense instrument. Storage time of herring in ice could be estimated by QIM with ± 2 days using 5 herring per lot. No correlation between instrumental texture parameters and storage time or between sensory and instrumental texture variables was found. E-nose measurements could be use to detect the onset of spoilage.