Induced Acyclic Graphoidal Covers in a Graph

An induced acyclic graphoidal cover of a graph G is a collection ψ of open paths in G such that every path in ψ has atleast two vertices, every vertex of G is an internal vertex of at most one path in ψ, every edge of G is in exactly one path in ψ and every member of ψ is an induced path. The minimum cardinality of an induced acyclic graphoidal cover of G is called the induced acyclic graphoidal covering number of G and is denoted by ηia(G) or ηia. Here we find induced acyclic graphoidal cover for some classes of graphs.

A Parametric Study: Frame Analysis Method for Masonry Arch Bridges

The predictability of masonry arch bridges and their behaviour is widely considered doubtful due to the lack of knowledge about the conditions of a given masonry arch bridge. The assessment methods for masonry arch bridges are MEXE, ARCHIE, RING and Frame Analysis Method. The material properties of the masonry and fill material are extremely difficult to determine accurately. Consequently, it is necessary to examine the effect of load dispersal angle through the fill material, the effect of variations in the stiffness of the masonry, the tensile strength of the masonry mortar continuum and the compressive strength of the masonry mortar continuum. It is also important to understand the effect of fill material on load dispersal angle to determine their influence on ratings. In this paper a series of parametric studies, to examine the sensitivity of assessment ratings to the various sets of input data required by the frame analysis method, are carried out.

The Effect of Granule Size on the Digestibility of Wheat Starch Using an in vitro Model

Wheat has a bimodal starch granule population and the dependency of the rate of enzymatic hydrolysis on particle size has been investigated. Ungelatinised wheaten starch granules were separated into two populations by sedimentation and decantation. Particle size was analysed by laser diffraction and morphological characteristics were viewed using SEM. The sedimentation technique though lengthy, gave satisfactory separation of the granules. Samples (10μm and original) were digested with a-amylase using a dialysis model. Granules of 10μm (p10μm. Moreover, the digestion rate was dependent on particle size whereby smaller granules produced higher rate of release. The methodology and results reported here can be used as a basis for further evaluations designed to delay the release of glucose during the digestion of native starches.

Using Non-Linear Programming Techniques in Determination of the Most Probable Slip Surface in 3D Slopes

Among many different methods that are used for optimizing different engineering problems mathematical (numerical) optimization techniques are very important because they can easily be used and are consistent with most of engineering problems. Many studies and researches are done on stability analysis of three dimensional (3D) slopes and the relating probable slip surfaces and determination of factors of safety, but in most of them force equilibrium equations, as in simplified 2D methods, are considered only in two directions. In other words for decreasing mathematical calculations and also for simplifying purposes the force equilibrium equation in 3rd direction is omitted. This point is considered in just a few numbers of previous studies and most of them have only given a factor of safety and they haven-t made enough effort to find the most probable slip surface. In this study shapes of the slip surfaces are modeled, and safety factors are calculated considering the force equilibrium equations in all three directions, and also the moment equilibrium equation is satisfied in the slip direction, and using nonlinear programming techniques the shape of the most probable slip surface is determined. The model which is used in this study is a 3D model that is composed of three upper surfaces which can cover all defined and probable slip surfaces. In this research the meshing process is done in a way that all elements are prismatic with quadrilateral cross sections, and the safety factor is defined on this quadrilateral surface in the base of the element which is a part of the whole slip surface. The method that is used in this study to find the most probable slip surface is the non-linear programming method in which the objective function that must get optimized is the factor of safety that is a function of the soil properties and the coordinates of the nodes on the probable slip surface. The main reason for using non-linear programming method in this research is its quick convergence to the desired responses. The final results show a good compatibility with the previously used classical and 2D methods and also show a reasonable convergence speed.

Growth and Stomatal Responses of Bread Wheat Genotypes in Tolerance to Salt Stress

Plant growth is affected by the osmotic stress as well as toxicity of salt in leaves. In order to study of salt stress effects on stomatal conductance and growth rate and relationship between them as wells osmotic and Na+-specific effects on these traits, four bread wheat genotypes differing in salt tolerance were selected. Salinity was applied when the leaf 4 was fully expanded. Sodium (Na+) concentrations in flag leaf blade at 3 salinity levels (0, 100 and 200 mM NaCl) were measured. Salt-tolerant genotypes showed higher stomatal conductance and growth rate compared to salt-sensitive ones. After 10 and 20 days exposure to salt, stomatal conductance and relative growth rate were reduced, but the reduction was greater in sensitive genotypes. Growth rate was reduced severely in the first period (1-10 days) of salt commencements and it was due to osmotic effect of salt not Na+ toxicity. In the second period (11-20 days) after salt treatment growth reduced only when salt accumulated to toxic concentrations in the leaves. A positive relationship between stomatal conductance and relative growth rate showed that stomatal conductance can be a reliable indicator of growth rate, and finally can be considered as a sensitive indicator of the osmotic stress. It seems 20 days after salinity, the major effect of salt, especially at low to moderate salinity levels on growth properties was due to the osmotic effect of salt, not to Na+-specific effects within the plant.

Synthesis of Monoacylglycerol from Glycerolysis of Crude Glycerol with Coconut Oil Catalyzed by Carica papaya Lipase

This paper studied the synthesis of monoacylglycerol (monolaurin) by glycerolysis of coconut oil and crude glycerol, catalyzed by Carica papaya lipase. Coconut oil obtained from cold pressed extraction method and crude glycerol obtained from the biodiesel plant in Department of Chemistry, Uttaradit Rajabhat University, Thailand which used oils were used as raw materials for biodiesel production through transesterification process catalyzed by sodium hydroxide. The influences of the following variables were studied: (i) type of organic solvent, (ii) molar ratio of substrate, (iii) reaction temperature, (iv) reaction time, (v) lipase dosage, and (vi) initial water activity of enzyme. High yields in monoacylglycerol (58.35%) were obtained with molar ratio of glycerol to oil at 8:1 in ethanol, temperature was controlled at 45oC for 36 hours, the amount of enzyme used was 20 wt% of oil and initial water activity of enzyme at 0.53.

Applying Similarity Theory and Hilbert Huang Transform for Estimating the Differences of Pig-s Blood Pressure Signals between Situations of Intestinal Artery Blocking and Unblocking

A mammal-s body can be seen as a blood vessel with complex tunnels. When heart pumps blood periodically, blood runs through blood vessels and rebounds from walls of blood vessels. Blood pressure signals can be measured with complex but periodic patterns. When an artery is clamped during a surgical operation, the spectrum of blood pressure signals will be different from that of normal situation. In this investigation, intestinal artery clamping operations were conducted to a pig for simulating the situation of intestinal blocking during a surgical operation. Similarity theory is a convenient and easy tool to prove that patterns of blood pressure signals of intestinal artery blocking and unblocking are surely different. And, the algorithm of Hilbert Huang Transform can be applied to extract the character parameters of blood pressure pattern. In conclusion, the patterns of blood pressure signals of two different situations, intestinal artery blocking and unblocking, can be distinguished by these character parameters defined in this paper.

Stature Estimation Using Foot and Shoeprint Length of Malaysian Population

Formulation of biological profile is one of the modern roles of forensic anthropologist. The present study was conducted to estimate height using foot and shoeprint length of Malaysian population. The present work can be very useful information in the process of identification of individual in forensic cases based on shoeprint evidence. It can help to narrow down suspects and ease the police investigation. Besides, stature is important parameters in determining the partial identify of unidentified and mutilated bodies. Thus, this study can help the problem encountered in cases of mass disaster, massacre, explosions and assault cases. This is because it is very hard to identify parts of bodies in these cases where people are dismembered and become unrecognizable. Samples in this research were collected from 200 Malaysian adults (100 males and 100 females) with age ranging from 20 to 45 years old. In this research, shoeprint length were measured based on the print of the shoes made from the flat shoes. Other information like gender, foot length and height of subject were also recorded. The data was analyzed using IBM® SPSS Statistics 19 software. Results indicated that, foot length has a strong correlation with stature than shoeprint length for both sides of the feet. However, in the unknown, where the gender was undetermined have shown a better correlation in foot length and shoeprint length parameter compared to males and females analyzed separately. In addition, prediction equations are developed to estimate the stature using linear regression analysis of foot length and shoeprint length. However, foot lengths give better prediction than shoeprint length. 

Passive Flow Control in Twin Air-Intakes

Aircraft propulsion systems often use Y-shaped subsonic diffusing ducts as twin air-intakes to supply the ambient air into the engine compressor for thrust generation. Due to space constraint, the diffusers need to be curved, which causes severe flow non-uniformity at the engine face. The present study attempt to control flow in a mild-curved Y-duct diffuser using trapezoidalshaped vortex generators (VG) attached on either both the sidewalls or top and bottom walls of the diffuser at the inflexion plane. A commercial computational fluid dynamics (CFD) code is modified and is used to simulate the effects of SVG in flow of a Y-duct diffuser. A few experiments are conducted for CFD code validation, while the rest are done computationally. The best combination of Yduct diffuser is found with VG-2 arranged in co-rotating sequence and attached to both the sidewalls, which ensures highest static pressure recovery, lowest total pressure loss, minimum flow distortion and less flow separation in Y-duct diffuser. The decrease in VG height while attached to top and bottom walls further improves axial flow uniformity at the diffuser outlet by a great margin as compared to the bare duct.

Experimental Modal Analysis and Model Validation of Antenna Structures

Numerical design optimization is a powerful tool that can be used by engineers during any stage of the design process. There are many different applications for structural optimization. A specific application that will be discussed in the following paper is experimental data matching. Data obtained through tests on a physical structure will be matched with data from a numerical model of that same structure. The data of interest will be the dynamic characteristics of an antenna structure focusing on the mode shapes and modal frequencies. The structure used was a scaled and simplified model of the Karoo Array Telescope-7 (KAT-7) antenna structure. This kind of data matching is a complex and difficult task. This paper discusses how optimization can assist an engineer during the process of correlating a finite element model with vibration test data.

Effect of Different pH on Canthaxanthin Degradation

In this research, natural canthaxanthin as one of the most important carotenoids was extracted from Dietzia natronolimnaea HS-1. The changes of canthaxanthin enriched in oilin- water emulsions with vegetable oil (5 mg/ 100 mL), Arabic gum (5 mg/100 mL), and potassium sorbate (0.5 g/100 mL) was investigated. The effects of different pH (3, 5 and 7), as well as, time treatment (3, 18 and 33 days) in the environmental temperature (24°C) on the degradation were studied by response surface methodology (RSM). The Hunter values (L*, a*, and b*) and the concentration of canthaxanthin (C, mg/L) illustrated more degradation of this pigment at low pHs (pH≤ 4) by passing the time (days≥10) with R² 97.00%, 91.31%, 97.60%, and 99.54% for C, L*, a*, and b* respectively. The predicted model were found to be significant (p

Travel Time Evaluation of an Innovative U-Turn Facility on Urban Arterial Roadways

Signalized intersections on high-volume arterials are often congested during peak hours, causing a decrease in through movement efficiency on the arterial. Much of the vehicle delay incurred at conventional intersections is caused by high left-turn demand. Unconventional intersection designs attempt to reduce intersection delay and travel time by rerouting left-turns away from the main intersection and replacing it with right-turn followed by Uturn. The proposed new type of U-turn intersection is geometrically designed with a raised island which provides a protected U-turn movement. In this study several scenarios based on different distances between U-turn and main intersection, traffic volume of major/minor approaches and percentage of left-turn volumes were simulated by use of AIMSUN, a type of traffic microsimulation software. Subsequently some models are proposed in order to compute travel time of each movement. Eventually by correlating these equations to some in-field collected data of some implemented U-turn facilities, the reliability of the proposed models are approved. With these models it would be possible to calculate travel time of each movement under any kind of geometric and traffic condition. By comparing travel time of a conventional signalized intersection with U-turn intersection travel time, it would be possible to decide on converting signalized intersections into this new kind of U-turn facility or not. However comparison of travel time is not part of the scope of this research. In this paper only travel time of this innovative U-turn facility would be predicted. According to some before and after study about the traffic performance of some executed U-turn facilities, it is found that commonly, this new type of U-turn facility produces lower travel time. Thus, evaluation of using this type of unconventional intersection should be seriously considered.

Applications of Cascade Correlation Neural Networks for Cipher System Identification

Crypto System Identification is one of the challenging tasks in Crypt analysis. The paper discusses the possibility of employing Neural Networks for identification of Cipher Systems from cipher texts. Cascade Correlation Neural Network and Back Propagation Network have been employed for identification of Cipher Systems. Very large collection of cipher texts were generated using a Block Cipher (Enhanced RC6) and a Stream Cipher (SEAL). Promising results were obtained in terms of accuracy using both the Neural Network models but it was observed that the Cascade Correlation Neural Network Model performed better compared to Back Propagation Network.

Numerical Simulation of Convection Heat Transfer in a Lid-Driven Cavity with an Open Side

In this manuscript, the LBM is applied for simulating of Mixed Convection in a Lid-Driven cavity with an open side. The cavity horizontal walls are insulated while the west Lid-driven wall is maintained at a uniform temperature higher than the ambient. Prandtl number (Pr) is fixed to 0.71 (air) while Reynolds number (Re) , Richardson number (Ri) and aspect ratio (A) of the cavity are changed in the range of 50-150 , of 0.1-10 and of 1-4 , respectively. The numerical code is validated for the standard square cavity, and then the results of an open ended cavity are presented. Result shows by increasing of aspect ratio, the average Nusselt number (Nu) on lid- driven wall decreases and with same Reynolds number (Re) by increasing of aspect ratio (A), Richardson number plays more important role in heat transfer rate.

Localisation of Anatomical Soft Tissue Landmarks of the Head in CT Images

In this paper, algorithms for the automatic localisation of two anatomical soft tissue landmarks of the head the medial canthus (inner corner of the eye) and the tragus (a small, pointed, cartilaginous flap of the ear), in CT images are describet. These landmarks are to be used as a basis for an automated image-to-patient registration system we are developing. The landmarks are localised on a surface model extracted from CT images, based on surface curvature and a rule based system that incorporates prior knowledge of the landmark characteristics. The approach was tested on a dataset of near isotropic CT images of 95 patients. The position of the automatically localised landmarks was compared to the position of the manually localised landmarks. The average difference was 1.5 mm and 0.8 mm for the medial canthus and tragus, with a maximum difference of 4.5 mm and 2.6 mm respectively.The medial canthus and tragus can be automatically localised in CT images, with performance comparable to manual localisation

Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories

Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.

A New Controlling Parameter in Design of Above Knee Prosthesis

In this paper after reviewing some previous studies, in order to optimize the above knee prosthesis, beside the inertial properties a new controlling parameter is informed. This controlling parameter makes the prosthesis able to act as a multi behavior system when the amputee is opposing to different environments. This active prosthesis with the new controlling parameter can simplify the control of prosthesis and reduce the rate of energy consumption in comparison to recently presented similar prosthesis “Agonistantagonist active knee prosthesis". In this paper three models are generated, a passive, an active, and an optimized active prosthesis. Second order Taylor series is the numerical method in solution of the models equations and the optimization procedure is genetic algorithm. Modeling the prosthesis which comprises this new controlling parameter (SEP) during the swing phase represents acceptable results in comparison to natural behavior of shank. Reported results in this paper represent 3.3 degrees as the maximum deviation of models shank angle from the natural pattern. The natural gait pattern belongs to walking at the speed of 81 m/min.

Radiological Risk Assessment in Soil Samples of Western Haryana, India

The measurements of 226Ra, 232Th and 40K using gamma spectrometry and radon concentration and exhalation rates measurements using solid state nuclear track (LR-115, Type-II plastic) detectors are used to asses a first order exposure risk for the persons residing in Fatehbad and Hissar districts of Western Haryana, India. The concentration of Radium, Thorium and Potassium in the soil samples varies from 13.37 Bq m-3 to 24.67 Bq m-3, 34.67 Bq m-3 to 67.34 Bq m-3 and 298.78 Bq m-3 to 405.67 Bq m-3 respectively with average values of 18.78, 47.35 and 361.57 Bq m-3 respectively. The radium equivalent activity (Raeq) calculated for the same soil samples varies from 92.72 Bq m-3 to 140.6 Bq m-3 with an average value of 111.80 Bq m-3. The values of absorbed dose and annual effective dose (indoors and outdoors) are found to vary from 44.18 nGy h-1 to 65.23 nGy h-1, 0.22 mSv y-1 to 0.32 mSv y-1 and 0.05 mSv y-1 to 0.08 mSv y-1 respectively. The radon concentration and exhalation rates have also been reported. The radium equivalent activities in all the soil samples were found to be lower than the limit (370 Bq kg-1) set in the Organization for Economic Cooperation and Development (OECD) report and the value of Hex in all the samples is less than unity.

Self-adaptation of Ontologies to Folksonomies in Semantic Web

Ontologies and tagging systems are two different ways to organize the knowledge present in the current Web. In this paper we propose a simple method to model folksonomies, as tagging systems, with ontologies. We show the scalability of the method using real data sets. The modeling method is composed of a generic ontology that represents any folksonomy and an algorithm to transform the information contained in folksonomies to the generic ontology. The method allows representing folksonomies at any instant of time.

A Data Hiding Model with High Security Features Combining Finite State Machines and PMM method

Recent years have witnessed the rapid development of the Internet and telecommunication techniques. Information security is becoming more and more important. Applications such as covert communication, copyright protection, etc, stimulate the research of information hiding techniques. Traditionally, encryption is used to realize the communication security. However, important information is not protected once decoded. Steganography is the art and science of communicating in a way which hides the existence of the communication. Important information is firstly hidden in a host data, such as digital image, video or audio, etc, and then transmitted secretly to the receiver.In this paper a data hiding model with high security features combining both cryptography using finite state sequential machine and image based steganography technique for communicating information more securely between two locations is proposed. The authors incorporated the idea of secret key for authentication at both ends in order to achieve high level of security. Before the embedding operation the secret information has been encrypted with the help of finite-state sequential machine and segmented in different parts. The cover image is also segmented in different objects through normalized cut.Each part of the encoded secret information has been embedded with the help of a novel image steganographic method (PMM) on different cuts of the cover image to form different stego objects. Finally stego image is formed by combining different stego objects and transmit to the receiver side. At the receiving end different opposite processes should run to get the back the original secret message.