Use of NMMO Pretreatment for Biogas Production from Oil Palm Empty Fruit Bunch

Pretreatment of oil palm empty fruit bunch (OPEFB) with N-Methylmorpholine-N-oxide (NMMO) to enhance biogas production was investigated. The pretreatments were performed at 90 and 120ºC for 1, 3, and 5 h using three different concentrations of NMMO of 73%, 79%, and 85%. The pretreated OPEFB was subsequently anaerobically digested to produce biogas. After pretreatment, there were no significant changes of the main composition of OPEFB and the maximum total solid recovery was 92%. The amorphous phase was increased up to 78% at pretreatment condition using 85% NMMO solution for 3 h at 120oC. In general, higher concentration of NMMO and higher temperature resulted in increased amorphous form and higher biogas production. The best results of biogas production reached enhancement of methane yield of 148% compared to the untreated OPEFB and increased in digestion of 94% compared to starch as reference.

Optimizing Spatial Trend Detection By Artificial Immune Systems

Spatial trends are one of the valuable patterns in geo databases. They play an important role in data analysis and knowledge discovery from spatial data. A spatial trend is a regular change of one or more non spatial attributes when spatially moving away from a start object. Spatial trend detection is a graph search problem therefore heuristic methods can be good solution. Artificial immune system (AIS) is a special method for searching and optimizing. AIS is a novel evolutionary paradigm inspired by the biological immune system. The models based on immune system principles, such as the clonal selection theory, the immune network model or the negative selection algorithm, have been finding increasing applications in fields of science and engineering. In this paper, we develop a novel immunological algorithm based on clonal selection algorithm (CSA) for spatial trend detection. We are created neighborhood graph and neighborhood path, then select spatial trends that their affinity is high for antibody. In an evolutionary process with artificial immune algorithm, affinity of low trends is increased with mutation until stop condition is satisfied.

Anticancer Effect of Doxorubicin Loaded Heparin based Super-paramagnetic Iron oxide Nanoparticles against the Human Ovarian Cancer Cells

This study determines the effect of naked and heparinbased super-paramagnetic iron oxide nanoparticles on the human cancer cell lines of A2780. Doxorubicin was used as the anticancer drug, entrapped in the SPIO-NPs. This study aimed to decorate nanoparticles with heparin, a molecular ligand for 'active' targeting of cancerous cells and the application of modified-nanoparticles in cancer treatment. The nanoparticles containing the anticancer drug DOX were prepared by a solvent evaporation and emulsification cross-linking method. The physicochemical properties of the nanoparticles were characterized by various techniques, and uniform nanoparticles with an average particle size of 110±15 nm with high encapsulation efficiencies (EE) were obtained. Additionally, a sustained release of DOX from the SPIO-NPs was successful. Cytotoxicity tests showed that the SPIO-DOX-HP had higher cell toxicity than the individual HP and confocal microscopy analysis confirmed excellent cellular uptake efficiency. These results indicate that HP based SPIO-NPs have potential uses as anticancer drug carriers and also have an enhanced anticancer effect.

Gas Flaring in the Niger Delta Nigeria: An Act of Inhumanity to Man and His Environment

The Niger Delta Region of Nigeria is home to about 20 million people and 40 different ethnic groups. The region has an area of seventy thousand square kilometers (70,000 KM2) of wetlands, formed primarily by sediments deposition and makes up 7.5 percent of Nigeria's total landmass. The notable ecological zones in this region includes: coastal barrier islands; mangrove swamp forests; fresh water swamps; and lowland rainforests. This incredibly naturally-endowed ecosystem region, which contains one of the highest concentrations of biodiversity on the planet, in addition to supporting abundant flora and fauna, is threatened by the inhuman act known as gas flaring. Gas flaring is the combustion of natural gas that is associated with crude oil when it is pumped up from the ground. In petroleum-producing areas such as the Niger Delta region of Nigeria where insufficient investment was made in infrastructure to utilize natural gas, flaring is employed to dispose of this associated gas. This practice has impoverished the communities where it is practiced, with attendant environmental, economic and health challenges. This paper discusses the adverse environmental and health implication associated with the practice, the role of Government, Policy makers, Oil companies and the Local communities aimed at bring this inhuman practice to a prompt end.

A New Approach to Design Policies for the Adoption of Alternative Fuel-Technology Powertrains

Planning the transition period for the adoption of alternative fuel-technology powertrains is a challenging task that requires sophisticated analysis tools. In this study, a system dynamic approach was applied to analyze the bi-directional interaction between the development of the refueling station network and vehicle sales. Besides, the developed model was used to estimate the transition cost to reach a predefined target (share of alternative fuel vehicles) in different scenarios. Several scenarios have been analyzed to investigate the effectiveness and cost of incentives on the initial price of vehicles, and on the evolution of fuel and refueling stations. Obtained results show that a combined set of incentives will be more effective than just a single specific type of incentives.

Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region

In this paper, the application of neural networks to study the design of short-term load forecasting (STLF) Systems for Illam state located in west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STLF systems was used. Our study based on MLP was trained and tested using three years (2004-2006) data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STLF systems.

General Haemodynamics, Aerobic Potential and Strategy for Adaptation of Students to Team Sports

Differentiated impact of team sports (basketball, indoor soccer, handball) on general haemodynamics and aerobic potential of students who specialize in technical subjects is detected only on the fourth year of studies in the institute of higher education. Those who play basketball and indoor soccer have shown increase of stroke and minute volume of blood indices, pumping and contractile function of the heart, oxygenation of blood and oxygen delivery to tissues, aerobic energy supply and balance of sympathetic and parasympathetic activity of the nervous regulation mechanism of the circulatory system. Those who play handball have shown these indices statistically decreased. On the whole playing basketball and indoor soccer optimizes the strategy for adaptation of students to the studying process, but playing handball does the opposite thing. The leading factor for adaptation of students is: those who play basketball have increase of minute blood volume which stipulates velocity of the system blood circulation and well-timed oxygen delivery to tissues; those who play indoor soccer have increase of power and velocity of contractile function of the heart; those who play handball have increase of resistance of thorax to the system blood flow which minimizes contractile function of the heart, blood oxygen saturation and delivery of oxygen to tissues.

Numerical Prediction of NOX in the Exhaust of a Compression Ignition Engine

For numerical prediction of the NOX in the exhaust of a compression ignition engine a model was developed by considering the parameter equivalence ratio. This model was validated by comparing the predicted results of NOX with experimental ones. The ultimate aim of the work was to access the applicability, robustness and performance of the improved NOX model against other NOX models.

A System to Integrate and Manipulate Protein Database Using BioPerl and XML

The size, complexity and number of databases used for protein information have caused bioinformatics to lag behind in adapting to the need to handle this distributed information. Integrating all the information from different databases into one database is a challenging problem. Our main research is to develop a tool which can be used to access and manipulate protein information from difference databases. In our approach, we have integrated difference databases such as Swiss-prot, PDB, Interpro, and EMBL and transformed these databases in flat file format into relational form using XML and Bioperl. As a result, we showed this tool can search different sizes of protein information stored in relational database and the result can be retrieved faster compared to flat file database. A web based user interface is provided to allow user to access or search for protein information in the local database.

In silico Simulations for DNA Shuffling Experiments

DNA shuffling is a powerful method used for in vitro evolute molecules with specific functions and has application in areas such as, for example, pharmaceutical, medical and agricultural research. The success of such experiments is dependent on a variety of parameters and conditions that, sometimes, can not be properly pre-established. Here, two computational models predicting DNA shuffling results is presented and their use and results are evaluated against an empirical experiment. The in silico and in vitro results show agreement indicating the importance of these two models and motivating the study and development of new models.

Energy Efficient Clustering and Data Aggregation in Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are wireless networks consisting of number of tiny, low cost and low power sensor nodes to monitor various physical phenomena like temperature, pressure, vibration, landslide detection, presence of any object, etc. The major limitation in these networks is the use of nonrechargeable battery having limited power supply. The main cause of energy consumption WSN is communication subsystem. This paper presents an efficient grid formation/clustering strategy known as Grid based level Clustering and Aggregation of Data (GCAD). The proposed clustering strategy is simple and scalable that uses low duty cycle approach to keep non-CH nodes into sleep mode thus reducing energy consumption. Simulation results demonstrate that our proposed GCAD protocol performs better in various performance metrics.

Multiple Power Flow Solutions Using Particle Swarm Optimization with Embedded Local Search Technique

Particle Swarm Optimization (PSO) with elite PSO parameters has been developed for power flow analysis under practical constrained situations. Multiple solutions of the power flow problem are useful in voltage stability assessment of power system. A method of determination of multiple power flow solutions is presented using a hybrid of Particle Swarm Optimization (PSO) and local search technique. The unique and innovative learning factors of the PSO algorithm are formulated depending upon the node power mismatch values to be highly adaptive with the power flow problems. The local search is applied on the pbest solution obtained by the PSO algorithm in each iteration. The proposed algorithm performs reliably and provides multiple solutions when applied on standard and illconditioned systems. The test results show that the performances of the proposed algorithm under critical conditions are better than the conventional methods.

Turkish Adolescents' Subjective Well-Being with Respect to Age, Gender and SES of Parents

In this research it is aimed that the effect of some demographic factors on Turkish Adolescents' subjective well being is investigated. 432 adolescents who are 247 girls and 185 boys are participated in this study. They are ages 15-17, and also are high school students. The Positive and Negative Affect Scale and Life Satisfaction Scale are used for measuring adolescents' subjective well being. The ANOVA method is used in order to examine the effect of ages. For gender differences, independent t-test method is used, and finally the Pearson Correlation method is used so as to examine the effect of socio economic statues of adolescents' parents. According to results, there is no gender difference on adolescents' subjective well being. On the other hand, SES and age are effect significantly lover level on adolescents' subjective well being.

Design a Line Start synchronous Motor and Analysis Effect of the Rotor Structure on the Efficiency

The line start permanent magnet motor (LSPMM) combines a permanent magnet rotor for a better motor efficiency during synchronous running with an induction motor squirrel cage rotor to permit the motor starting by direct coupling to power source. In this paper effect of the rotor structure on a line start synchronous permanent magnet motor (LSPMM) is analyzed. LSPMM motor with three different structures for rotor is designed by using RMxprt software; efficiency and line current of LSPMM motor for different structures in full-load condition have been presented. The results indicate that with correct choosing of rotor structure, maximum efficiency can be found.

Generator Capability Curve Constraint for PSO Based Optimal Power Flow

An optimal power flow (OPF) based on particle swarm optimization (PSO) was developed with more realistic generator security constraint using the capability curve instead of only Pmin/Pmax and Qmin/Qmax. Neural network (NN) was used in designing digital capability curve and the security check algorithm. The algorithm is very simple and flexible especially for representing non linear generation operation limit near steady state stability limit and under excitation operation area. In effort to avoid local optimal power flow solution, the particle swarm optimization was implemented with enough widespread initial population. The objective function used in the optimization process is electric production cost which is dominated by fuel cost. The proposed method was implemented at Java Bali 500 kV power systems contain of 7 generators and 20 buses. The simulation result shows that the combination of generator power output resulted from the proposed method was more economic compared with the result using conventional constraint but operated at more marginal operating point.

Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator

Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.

Design and Economical Performance of Gray Water Treatment Plant in Rural Region

In India, the quarrel between the budding human populace and the planet-s unchanging supply of freshwater and falling water tables has strained attention the reuse of gray water as an alternative water resource in rural development. This paper present the finest design of laboratory scale gray water treatment plant, which is a combination of natural and physical operations such as primary settling with cascaded water flow, aeration, agitation and filtration, hence called as hybrid treatment process. The economical performance of the plant for treatment of bathrooms, basins and laundries gray water showed in terms of deduction competency of water pollutants such as COD (83%), TDS (70%), TSS (83%), total hardness (50%), oil and grease (97%), anions (46%) and cations (49%). Hence, this technology could be a good alternative to treat gray water in residential rural area.

Use of Bayesian Network in Information Extraction from Unstructured Data Sources

This paper applies Bayesian Networks to support information extraction from unstructured, ungrammatical, and incoherent data sources for semantic annotation. A tool has been developed that combines ontologies, machine learning, and information extraction and probabilistic reasoning techniques to support the extraction process. Data acquisition is performed with the aid of knowledge specified in the form of ontology. Due to the variable size of information available on different data sources, it is often the case that the extracted data contains missing values for certain variables of interest. It is desirable in such situations to predict the missing values. The methodology, presented in this paper, first learns a Bayesian network from the training data and then uses it to predict missing data and to resolve conflicts. Experiments have been conducted to analyze the performance of the presented methodology. The results look promising as the methodology achieves high degree of precision and recall for information extraction and reasonably good accuracy for predicting missing values.

Adaptive Impedance Control for Unknown Time-Varying Environment Position and Stiffness

This study is concerned with a new adaptive impedance control strategy to compensate for unknown time-varying environment stiffness and position. The uncertainties are expressed by Function Approximation Technique (FAT), which allows the update laws to be derived easily using Lyapunov stability theory. Computer simulation results are presented to validate the effectiveness of the proposed strategy.

Studies on the Blended Concrete Prepared with Tannery Effluent

There is a acute water problem especially in the dry season in and around Perundurai (Erode district, Tamil Nadu, India) where there are more number of tannery units. Hence an attempt was made to use the waste water from tannery industry for construction purpose. The mechanical properties such as compressive strength, tensile strength, flexural strength etc were studied by casting various concrete specimens in form of cube, cylinders and beams etc and were found to be satisfactory. Hence some special properties such as chloride attack, sulphate attack and chemical attack are considered and comparatively studied with the conventional potable water. In this experimental study the results of specimens prepared by using treated and untreated tannery effluent were compared with the concrete specimens prepared by using potable water. It was observed that the concrete had some reduction in strength while subjected to chloride attack, sulphate attack and chemical attack. So admixtures were selected and optimized in suitable proportion to counter act the adverse effects and the results were found to be satisfactory.