In silico Simulations for DNA Shuffling Experiments

DNA shuffling is a powerful method used for in vitro evolute molecules with specific functions and has application in areas such as, for example, pharmaceutical, medical and agricultural research. The success of such experiments is dependent on a variety of parameters and conditions that, sometimes, can not be properly pre-established. Here, two computational models predicting DNA shuffling results is presented and their use and results are evaluated against an empirical experiment. The in silico and in vitro results show agreement indicating the importance of these two models and motivating the study and development of new models.

Authors:



References:
[1] Montera, L.; Nicoletti, M.C.; Silva, F.H. "Computer Assisted Parental
Sequences Analysis as a Previous Step to DNA Shuffling Process".
IEEE Congress on Evolutionary Computation, 8079-8086, 2006.
[2] Voigt, C.A., Mayo, S.L., Arnold, F.H. and Wang, ZG. "Computationally
Focusing the Directed Evolution of Proteins". Journal of Cellular
Biochemistry Supplement 37, 58-63, 2001.
[3] Cadwell, RC.; Joyce, G;F. "Randomization of genes by PCR
mutagenesis". PCR Method Appl., 2, 28 33, 1992.
[4] Zhao, H., Giver, L., Shao, Z., Affholter, A., Arnold, F. H. "Molecular
evolution by staggered extension process (StEP) in vitro recombination".
Nature Biotechnol. 16, pp. 258-261, 1998.
[5] Shao, Z., Zhao, H., Giver, L., Arnold, F.H. "Random-priming in vitro
recombination: an effective tool for directed evolution". Nucleic Acids
Research 26, 681-683, 1998.
[6] Stemmer,W.P.C. "Rapid evolution of a protein in vitro by DNA
shuffling". Nature 370, 389-391, 1994.
[7] Stemmer,W.P.C. "DNA shuffling by random fragmentation and
reassembly: In vitro recombination for molecular evolution". Proc. Natl.
Acad. Sci. USA 91, 10747-10751, 1994.
[8] Patnaik, R.; Louie, S.; Gavrilovic, V.; Perry, K.; Stemmer, W.P.C.;
Ryan, C.M.; Cardayré, S. "Genome shuffling of Lactobacillus for
improve acid tolerance". Nature Biotechnology 20, 707-712, 2002.
[9] Christians, F.C.; Scapozza, L.; Crameri, A.; Folkers, G.; Stemmer,
W.P.C. "Directed evolution of thymidine kinase for AZT
phosphorylation using DNA family shuffling". Nature Biotechnology
17, 259-264, 1999.
[10] Chang, C.C.; Chen, T.T.; Cox, B.W.; Dawes, G.N.; Stemmer, W.P.C.;
Punnonen, J.; Patten, P.A. "Evolution of a cytokine using DNA family
shuffling". Nature Biotchnology 17(8), 793-797, 1999.
[11] Ness, J.E.; Welch, M.; Giver, L.; Bueno, M.; Cherry, J.R.; Borchert,
T.V.; Stemmer, W.P.C.; Minshull, J. "DNA shuffling of DNA
subgenomic sequences of subtilisin". Nature Biotechnology 17, 893-
896, 1999.
[12] Yanga, L.; Jianga, J.; Drouinb, L.M.; Agbandje-Mckennab, M.; Chena,
C.; Qiaoa, C.; Pua, D.; Huc, X.; Wangc, D.; Lia, J.; Xiaoa, X. "A
myocardium tropic adeno-associated virus (AAV) evolved by DNA
shuffling and in vivo selection". PNAS 106(10), 3946-3951, 2009.
[13] Ryu, K.; Hwang, S.Y.; Kim, K.H.; Kang, J.H.; Lee, E.K. "Functionality
improvement of fungal lignin peroxidase by DNA shuffling for 2,4-
dichlorophenol degradability and H2O2 stability". Journal of
Biotechnology 133(1), 110-115, 2008.
[14] Koerber, J.T.; , Jang, J.H; Schaffer, D.V. "DNA Shuffling of Adenoassociated
Virus Yields Functionally Diverse Viral Progeny". Molecular
Therapy 16(10), 1703-1709, 2008.
[15] Maheshri, N.; Koerber, J.T.; Kaspar, B.K.; Schaffer, D.V. "Directed
evolution of adeno- associated virus yields enhanced gene delivery
vectors". Nat. Biotech. 24, 198 -204, 2006.
[16] Volkov, A.A.; Arnold, F.H. "Methods for in vitro DNA Recombination
and Random Chimeragenesis". Methods in Enzymology 328, 447-456,
2000.
[17] Moore, G.L.; Maranas, C.D.; Gutshall, K.R.; Brenchley, J.E. "Modeling
and optimization of DNA recombination". Computers & Chemical
Engineering 24, 693-699, 2000.
[18] Moore, G.L.; Maranas, C.D.; Lutz, S.; Benkovic, S.L. "Predicting
crossover generation in DNA shuffling". PNAS 98, 3226-3231, 2001.
[19] Patrick, W.M.; Firth, A.E.; Blackburn, J.M. "User-friendly algorithms
for estimating completeness and diversity in randomized proteinencoding
libraries". Protein Engineering 16(6), 451-457, 2003.
[20] Raillard, S.; Krebber, A.; Chen, Y.; Ness, J.E.; Bermudez, E.; Trinidad,
R.; Fullem, R.; Davis, C.; Welch, M.; Seffernick, J.; Wackett, L.P.;
Stemmer, W.P.C.; Minshull, J. "Novel enzyme activities and functional
plasticity revealed by recombining highly homologous enzymes".
Chemistry & Biology 8, 891-898, 2001.
[21] Breslauer,K.J.; Frank,R.; Blocker, H.; Marky, L.A. "Predicting DNA
duplex stability from the base sequence". Proc Natl Acad Sci USA
83(11), 3746-3750, 1986.
[22] Allawi, H.T. & SantaLucia, J.Jr. "Thermodynamics and NMR of Internal
G-T Mismatches in DNA", Biochemistry 36, 10581-10594, 1997.
[23] Joern, J.M.; Meinhold, P.; Arnold, F.H. "Analysis of shuffled gene
libraries". Journal of Molecular Biology, 316 (3), 643-56, 2002.