Places of Tourist Attraction: Planning Sustainable Fruition by Preserving Place Identity

Massive use of places with strong tourist attraction with the consequent possibility of losing place-identity produces harmful effects on cities and their users. In order to mitigate this risk, areas close to such places can be identified so as to widen the visitor-s range of action and offer alternative activities integrated with the main site. The cultural places and appropriate activities can be identified using a method of analysis and design able to trace the identity of the places, their characteristics and potential, and to provide a sustainable improvement. The aim of this work is to propose PlaceMaker as a method of urban analysis and design which both detects elements that do not feature in traditional mapping and which constitute the contemporary identity of the places, and identifies appropriate project interventions. Two final complex maps – the first of analysis and the second of design – respectively represent the identity of places and project interventions. In order to illustrate the method-s potential; the results of the experimentation carried out in the Trevi-Pantheon route in Rome and the appropriate interventions to decongest the area are illustrated.

Development of an Autonomous Friction Gripper for Industrial Robots

Industrial robots become useless without end-effectors that for many instances are in the form of friction grippers. Commonly friction grippers apply frictional forces to different objects on the basis of programmers- experiences. This puts a limitation on the effectiveness of gripping force that may result in damaging the object. This paper describes various stages of design and development of a low cost sensor-based robotic gripper that would facilitate the task of applying right gripping forces to different objects. The gripper is also equipped with range sensors in order to avoid collisions of the gripper with objects. It is a fully functional automated pick and place gripper which can be used in many industrial applications. Yet it can also be altered or further developed in order to suit a larger number of industrial activities. The current design of gripper could lead to designing completely automated robot grippers able to improve the efficiency and productivity of industrial robots.

Target Signal Detection Using MUSIC Spectrum in Noise Environment

In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. The algorithm detects the DOAs of multiple sources using the inverse of the eigenvalue-weighted eigen spectra. To apply the algorithm to target signal detection for GSC-based beamforming, we utilize its spectral response for the target DOA in noisy conditions. For evaluation of the algorithm, the performance of the proposed target signal detection method is compared with that of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics(ROC) curves.

Realization of Electronically Controllable Current-mode Square-rooting Circuit Based on MO-CFTA

This article proposes a current-mode square-rooting circuit using current follower transconductance amplifier (CTFA). The amplitude of the output current can be electronically controlled via input bias current with wide input dynamic range. The proposed circuit consists of only single CFTA. Without any matching conditions and external passive elements, the circuit is then appropriate for an IC architecture. The magnitude of the output signal is temperature-insensitive. The PSpice simulation results are depicted, and the given results agree well with the theoretical anticipation. The power consumption is approximately 1.96mW at ±1.5V supply voltages.

Design Method for Knowledge Base Systems in Education Using COKB-ONT

Nowadays e-Learning is more popular, in Vietnam especially. In e-learning, materials for studying are very important. It is necessary to design the knowledge base systems and expert systems which support for searching, querying, solving of problems. The ontology, which was called Computational Object Knowledge Base Ontology (COB-ONT), is a useful tool for designing knowledge base systems in practice. In this paper, a design method for knowledge base systems in education using COKB-ONT will be presented. We also present the design of a knowledge base system that supports studying knowledge and solving problems in higher mathematics.

A Study on Polymer Coated Colour Pigments for Water-Based Ink

The pigments covered by film-forming polymers have opened a prospect to improve the quality of water-based printing inks. In this study such pigments were prepared by the initiated polymerization of styrene and methacrylate derivative monomers in the aqueous pigment dispersions. The formation of polymer films covering pigment cores depends on the polymerization time and the ratio of pigment to monomers. At the time of 4 hours and the ratio of 1/10 almost pigment particles are coated by the polymer. The formed polymer covers of pigments have the average thickness of 5.95 nm. The size increasing percentage of the coated particles after a week is 4.5 %, about fourteen-fold lower than of the original ones. The obtained results indicate that the coated pigments are improved dispersion stability in water medium along with a guarantee for the optical colour.

The Minimum PAPR Code for OFDM Systems

In this paper, a block code to minimize the peak-toaverage power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals is proposed. It is shown that cyclic shift and codeword inversion cause not change to peak envelope power. The encoding rule for the proposed code comprises of searching for a seed codeword, shifting the register elements, and determining codeword inversion, eliminating the look-up table for one-to-one correspondence between the source and the coded data. Simulation results show that OFDM systems with the proposed code always have the minimum PAPR.

Influence of Sire Breed, Protein Supplementation and Gender on Wool Spinning Fineness in First-Cross Merino Lambs

Our objectives were to evaluate the effects of sire breed, type of protein supplement, level of supplementation and sex on wool spinning fineness (SF), its correlations with other wool characteristics and prediction accuracy in F1 Merino crossbred lambs. Texel, Coopworth, White Suffolk, East Friesian and Dorset rams were mated with 500 purebred Merino dams at a ratio of 1:100 in separate paddocks within a single management system. The F1 progeny were raised on ryegrass pasture until weaning, before forty lambs were randomly allocated to treatments in a 5 x 2 x 2 x 2 factorial experimental design representing 5 sire breeds, 2 supplementary feeds (canola or lupins), 2 levels of supplementation (1% or 2% of liveweight) and sex (wethers or ewes). Lambs were supplemented for six weeks after an initial three weeks of adjustment, wool sampled at the commencement and conclusion of the feeding trial and analyzed for SF, mean fibre diameter (FD), coefficient of variation (CV), standard deviation, comfort factor (CF), fibre curvature (CURV), and clean fleece yield. Data were analyzed using mixed linear model procedures with sire fitted as a random effect, and sire breed, sex, supplementary feed type, level of supplementation and their second-order interactions as fixed effects. Sire breed (P

Dimension Reduction of Microarray Data Based on Local Principal Component

Analysis and visualization of microarraydata is veryassistantfor biologists and clinicians in the field of diagnosis and treatment of patients. It allows Clinicians to better understand the structure of microarray and facilitates understanding gene expression in cells. However, microarray dataset is a complex data set and has thousands of features and a very small number of observations. This very high dimensional data set often contains some noise, non-useful information and a small number of relevant features for disease or genotype. This paper proposes a non-linear dimensionality reduction algorithm Local Principal Component (LPC) which aims to maps high dimensional data to a lower dimensional space. The reduced data represents the most important variables underlying the original data. Experimental results and comparisons are presented to show the quality of the proposed algorithm. Moreover, experiments also show how this algorithm reduces high dimensional data whilst preserving the neighbourhoods of the points in the low dimensional space as in the high dimensional space.

Optimization of Two-Stage Pretreatment Combined with Microwave Radiation Using Response Surface Methodology

Pretreatment is an essential step in the conversion of lignocellulosic biomass to fermentable sugar that used for biobutanol production. Among pretreatment processes, microwave is considered to improve pretreatment efficiency due to its high heating efficiency, easy operation, and easily to combine with chemical reaction. The main objectives of this work are to investigate the feasibility of microwave pretreatment to enhance enzymatic hydrolysis of corncobs and to determine the optimal conditions using response surface methodology. Corncobs were pretreated via two-stage pretreatment in dilute sodium hydroxide (2 %) followed by dilute sulfuric acid 1 %. Pretreated corncobs were subjected to enzymatic hydrolysis to produce reducing sugar. Statistical experimental design was used to optimize pretreatment parameters including temperature, residence time and solid-to-liquid ratio to achieve the highest amount of glucose. The results revealed that solid-to-liquid ratio and temperature had a significant effect on the amount of glucose.

Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty

This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.

Evaluation of the Microbiological, Chemical and Sensory Quality of Carp Processed by the Sous Vide Method

This study evaluated the microbiological quality and the sensory characteristics of carp fillets processed by the sousvide method when stored at 2 and 10 °C. Four different combinations of sauced–storage were studied then stored at 2 or 10 °C was evaluate periodically sensory, microbiological and chemical quality. Batches stored at 2 °C had lower growth rates of mesophiles and psychrotrophs. Moreover, these counts decreased by increasing the heating temperature and time. Staphylococcus aureus, Bacillus cereus, Clostridium perfringens and Listeria monocytogenes were not found in any of the samples. The heat treatment of 90 °C for 15 min and sauced was the most effective to ensure the safety and extend the shelf-life of sousvide carp preserving its sensory characteristics. This study establishes the microbiological quality of sous vide carp and emphasizes the relevance of the raw materials, heat treatment and storage temperature to ensure the safety of the product.

Constructing a Suitable Model of Distance Training for Community Leader in the Upper Northeastern Region

The objective of this research intends to create a suitable model of distance training for community leaders in the upper northeastern region of Thailand. The implementation of the research process is divided into four steps: The first step is to analyze relevant documents. The second step deals with an interview in depth with experts. The third step is concerned with constructing a model. And the fourth step takes aim at model validation by expert assessments. The findings reveal the two important components for constructing an appropriate model of distance training for community leaders in the upper northeastern region. The first component consists of the context of technology management, e.g., principle, policy and goals. The second component can be viewed in two ways. Firstly, there are elements comprising input, process, output and feedback. Secondly, the sub-components include steps and process in training. The result of expert assessments informs that the researcher-s constructed model is consistent and suitable and overall the most appropriate.

Optimum Design of an Absorption Heat Pump Integrated with a Kraft Industry using Genetic Algorithm

In this study the integration of an absorption heat pump (AHP) with the concentration section of an industrial pulp and paper process is investigated using pinch technology. The optimum design of the proposed water-lithium bromide AHP is then achieved by minimizing the total annual cost. A comprehensive optimization is carried out by relaxation of all stream pressure drops as well as heat exchanger areas involving in AHP structure. It is shown that by applying genetic algorithm optimizer, the total annual cost of the proposed AHP is decreased by 18% compared to one resulted from simulation.

A Micro-Watt Second Order Filter for a Chopper Stabilized MEMS Pressure Sensor Interface

This paper describes a low-power second-order filter for a continuous-time chopper stabilized capacitive sensor interface, integrated with a fully differential post-CMOS surface-micromachined MEMS pressure sensor. The circuit uses a single-ended folded-cascode operational amplifier and two GM-C filters connected in cascade. The circuit is realized in a 0.18 μm CMOS process and offers differential to single-ended conversion. The novelty of the scheme is the cascade of two GM-C filters to achieve a second-order filter while minimizing power dissipation. The simulated filter cutoff frequency is 1.14 kHz at common-mode voltage 1.65 V, operating from a 3.3 V supply while dissipating 172μW of power. The filter achieves an operating range of 1V for an output load of 1MOhm and 10pF.

Fuzzy Clustering of Categorical Attributes and its Use in Analyzing Cultural Data

We develop a three-step fuzzy logic-based algorithm for clustering categorical attributes, and we apply it to analyze cultural data. In the first step the algorithm employs an entropy-based clustering scheme, which initializes the cluster centers. In the second step we apply the fuzzy c-modes algorithm to obtain a fuzzy partition of the data set, and the third step introduces a novel cluster validity index, which decides the final number of clusters.

A Power Conversion System using the Renewable Energies for HEV Charger

With a development of Hybrid Electric Vehicle(HEV), A photovoltaic(PV) generation system is used for charging batteries in many cases. A dc/dc converter using PV power for a battery charger requires a high efficiency. In this paper, A ZVS boost converter using the renewable energies for HEV charger is proposed. Through the theoretical analysis and experimental result, operation modes and characteristics of the proposed topology are verified.

Perturbation Based Search Method for Solving Unconstrained Binary Quadratic Programming Problem

This paper presents a perturbation based search method to solve the unconstrained binary quadratic programming problem. The proposed algorithm was tested with some of the standard test problems and the results are reported for 10 instances of 50, 100, 250, & 500 variable problems. A comparison of the performance of the proposed algorithm with other heuristics and optimization software is made. Based on the results, it was found that the proposed algorithm is computationally inexpensive and the solutions obtained match the best known solutions for smaller sized problems. For larger instances, the algorithm is capable of finding a solution within 0.11% of the best known solution. Apart from being used as a stand-alone method, this algorithm could also be incorporated with other heuristics to find better solutions.

Carbon Nanotubes with Magnetic Particles

Magnetic carbon nanotubes composites were obtained by filling carbon nanotubes with paramagnetic iron oxide particles. Detailed investigation of magnetic behaviour of resulting composites was done at different temperatures. Measurements indicate that these functionalized nanotubes are superparamagnetic at room temperature; however, no superparamagnetism was observed at 125 K and 80 K. The blocking temperature TB was estimated at 145 K. These magnetic carbon nanotubes have the potential of being used in a wide range of applications, in particular, the production of nanofluids, which can be controlled and steered by appropriate magnetic fields.

Information Retrieval: Improving Question Answering Systems by Query Reformulation and Answer Validation

Question answering (QA) aims at retrieving precise information from a large collection of documents. Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems to reformulate questions. Moreover answer processing module is an emerging topic in QA systems, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic relations and co-occurrence keywords. This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing which both affect on the evaluation of the system operations. There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user's question into an understandable question by QA system in a specific domain. The objective of an Answer Validation task is thus to judge the correctness of an answer returned by a QA system, according to the text snippet given to support it. For validating answers we apply candidate answer filtering, candidate answer ranking and also it has a final validation section by user voting. Also this paper described new architecture of question and answer processing modules with modeling, implementing and evaluating the system. The system differs from most question answering systems in its answer validation model. This module makes it more suitable to find exact answer. Results show that, from total 50 asked questions, evaluation of the model, show 92% improving the decision of the system.