Using Fuzzy Controller in Induction Motor Speed Control with Constant Flux

Variable speed drives are growing and varying. Drives expanse depend on progress in different part of science like power system, microelectronic, control methods, and so on. Artificial intelligent contains hard computation and soft computation. Artificial intelligent has found high application in most nonlinear systems same as motors drive. Because it has intelligence like human but there are no sentimental against human like angriness and.... Artificial intelligent is used for various points like approximation, control, and monitoring. Because artificial intelligent techniques can use as controller for any system without requirement to system mathematical model, it has been used in electrical drive control. With this manner, efficiency and reliability of drives increase and volume, weight and cost of them decrease.

Binary Mixture of Copper-Cobalt Ions Uptake by Zeolite using Neural Network

In this study a neural network (NN) was proposed to predict the sorption of binary mixture of copper-cobalt ions into clinoptilolite as ion-exchanger. The configuration of the backpropagation neural network giving the smallest mean square error was three-layer NN with tangent sigmoid transfer function at hidden layer with 10 neurons, linear transfer function at output layer and Levenberg-Marquardt backpropagation training algorithm. Experiments have been carried out in the batch reactor to obtain equilibrium data of the individual sorption and the mixture of coppercobalt ions. The obtained modeling results have shown that the used of neural network has better adjusted the equilibrium data of the binary system when compared with the conventional sorption isotherm models.

Consistent Modeling of Functional Dependencies along with World Knowledge

In this paper we propose a method for vision systems to consistently represent functional dependencies between different visual routines along with relational short- and long-term knowledge about the world. Here the visual routines are bound to visual properties of objects stored in the memory of the system. Furthermore, the functional dependencies between the visual routines are seen as a graph also belonging to the object-s structure. This graph is parsed in the course of acquiring a visual property of an object to automatically resolve the dependencies of the bound visual routines. Using this representation, the system is able to dynamically rearrange the processing order while keeping its functionality. Additionally, the system is able to estimate the overall computational costs of a certain action. We will also show that the system can efficiently use that structure to incorporate already acquired knowledge and thus reduce the computational demand.

Optimization of Communication Protocols by stochastic Delay Mechanisms

The paper is concerned with developing stochastic delay mechanisms for efficient multicast protocols and for smooth mobile handover processes which are capable of preserving a given Quality of Service (QoS). In both applications the participating entities (receiver nodes or subscribers) sample a stochastic timer and generate load after a random delay. In this way, the load on the networking resources is evenly distributed which helps to maintain QoS communication. The optimal timer distributions have been sought in different p.d.f. families (e.g. exponential, power law and radial basis function) and the optimal parameter have been found in a recursive manner. Detailed simulations have demonstrated the improvement in performance both in the case of multicast and mobile handover applications.

A Study on Exclusive Breastfeeding using Over-dispersed Statistical Models

Breastfeeding is an important concept in the maternal life of a woman. In this paper, we focus on exclusive breastfeeding. Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. This type of breastfeeding is very important during the first six months because it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, in Mauritius, exclusive breastfeeding has decreased the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we give an overview of exclusive breastfeeding in Mauritius and the factors influencing it. We further analyze the local practices of exclusive breastfeeding using the Generalized Poisson regression model and the negative-binomial model since the data are over-dispersed.

Image Clustering Framework for BAVM Segmentation in 3DRA Images: Performance Analysis

Brain ArterioVenous Malformation (BAVM) is an abnormal tangle of brain blood vessels where arteries shunt directly into veins with no intervening capillary bed which causes high pressure and hemorrhage risk. The success of treatment by embolization in interventional neuroradiology is highly dependent on the accuracy of the vessels visualization. In this paper the performance of clustering techniques on vessel segmentation from 3- D rotational angiography (3DRA) images is investigated and a new technique of segmentation is proposed. This method consists in: preprocessing step of image enhancement, then K-Means (KM), Fuzzy C-Means (FCM) and Expectation Maximization (EM) clustering are used to separate vessel pixels from background and artery pixels from vein pixels when possible. A post processing step of removing false-alarm components is applied before constructing a three-dimensional volume of the vessels. The proposed method was tested on six datasets along with a medical assessment of an expert. Obtained results showed encouraging segmentations.

Study of Microbial Critical Points of Saffron from Farm to Factory in Iran

In this research saffron samples were prepared from farms and sampling was done in four states contain : sampling from fresh saffron of petal with forceps , sampling from fresh saffron of petal by hands, sampling from dried sample by warm air in shadow, sampling from dried sample which dried by dryer. Samples collected and kept in sterile tubes and containers and carried to laboratory and maintained until experiment. Microbial experiments were performed to determine microbial load such as total count, Staphylococcus aureus, coli form, E.coli, mold and yeast. Results showed that in picking and drying stages the contamination amount increases in saffron samples. There was a significant difference between the microbial load of picked up saffron by forceps and by hands, and also between dried saffron by warm air in shadow and by dryer.

Multi-threshold Approach for License Plate Recognition System

The objective of this paper is to propose an adaptive multi threshold for image segmentation precisely in object detection. Due to the different types of license plates being used, the requirement of an automatic LPR is rather different for each country. The proposed technique is applied on Malaysian LPR application. It is based on Multi Layer Perceptron trained by back propagation. The proposed adaptive threshold is introduced to find the optimum threshold values. The technique relies on the peak value from the graph of the number object versus specific range of threshold values. The proposed approach has improved the overall performance compared to current optimal threshold techniques. Further improvement on this method is in progress to accommodate real time system specification.

Cooling Turbine Blades using Exciting Boundary Layer

The present study is concerned with the effect of exciting boundary layer on cooling process in a gas-turbine blades. The cooling process is numerically investigated. Observations show cooling the first row of moving or stable blades leads to increase their life-time. Results show that minimum temperature in cooling line with exciting boundary layer is lower than without exciting. Using block in cooling line of turbines' blade causes flow pattern and stability in boundary layer changed that causes increase in heat transfer coefficient. Results show at the location of block, temperature of turbines' blade is significantly decreased. The k-ε turbulence model is used.

An Unstructured Finite-volume Technique for Shallow-water Flows with Wetting and Drying Fronts

An unstructured finite volume numerical model is presented here for simulating shallow-water flows with wetting and drying fronts. The model is based on the Green-s theorem in combination with Chorin-s projection method. A 2nd-order upwind scheme coupled with a Least Square technique is used to handle convection terms. An Wetting and drying treatment is used in the present model to ensures the total mass conservation. To test it-s capacity and reliability, the present model is used to solve the Parabolic Bowl problem. We compare our numerical solutions with the corresponding analytical and existing standard numerical results. Excellent agreements are found in all the cases.

Endothelial Specificity of ICAM2, Flt-1, and Tie2 Promoters In Vitro and In Vivo

To identify an endothelial cell-specific promoter suitable for vascular-specific targeting, we tested five promoters in vitro--Tie2SE, Tie2LE, ICAM2, Flt-1 and vWF--for promoter activity and specificity in endothelial cells, smooth muscle cells and non-vascular resident cells as well as tissues. These promoters, except for vWF, exhibited good endothelial activity and specificity in vitro. In a syngenic heart transplantation model, the ICAM2 promoter was variably functional in coronary endothelial cells of donor hearts. Thus, the ICAM2, Flt-1, Tie2SE and Tie2LE promoters hold promise for endothelial-specific targeting, but in vitro expression may not predict in vivo expression.

Investigating Crime Hotspot Places and their Implication to Urban Environmental Design: A Geographic Visualization and Data Mining Approach

Information is power. Geographical information is an emerging science that is advancing the development of knowledge to further help in the understanding of the relationship of “place" with other disciplines such as crime. The researchers used crime data for the years 2004 to 2007 from the Baguio City Police Office to determine the incidence and actual locations of crime hotspots. Combined qualitative and quantitative research methodology was employed through extensive fieldwork and observation, geographic visualization with Geographic Information Systems (GIS) and Global Positioning Systems (GPS), and data mining. The paper discusses emerging geographic visualization and data mining tools and methodologies that can be used to generate baseline data for environmental initiatives such as urban renewal and rejuvenation. The study was able to demonstrate that crime hotspots can be computed and were seen to be occurring to some select places in the Central Business District (CBD) of Baguio City. It was observed that some characteristics of the hotspot places- physical design and milieu may play an important role in creating opportunities for crime. A list of these environmental attributes was generated. This derived information may be used to guide the design or redesign of the urban environment of the City to be able to reduce crime and at the same time improve it physically.

Efficient Web-Learning Collision Detection Tool on Five-Axis Machine

As networking has become popular, Web-learning tends to be a trend while designing a tool. Moreover, five-axis machining has been widely used in industry recently; however, it has potential axial table colliding problems. Thus this paper aims at proposing an efficient web-learning collision detection tool on five-axis machining. However, collision detection consumes heavy resource that few devices can support, thus this research uses a systematic approach based on web knowledge to detect collision. The methodologies include the kinematics analyses for five-axis motions, separating axis method for collision detection, and computer simulation for verification. The machine structure is modeled as STL format in CAD software. The input to the detection system is the g-code part program, which describes the tool motions to produce the part surface. This research produced a simulation program with C programming language and demonstrated a five-axis machining example with collision detection on web site. The system simulates the five-axis CNC motion for tool trajectory and detects for any collisions according to the input g-codes and also supports high-performance web service benefiting from C. The result shows that our method improves 4.5 time of computational efficiency, comparing to the conventional detection method.

Orbit Propagator and Geomagnetic Field Estimator for NanoSatellite: The ICUBE Mission

This research contribution is drafted to present the orbit design, orbit propagator and geomagnetic field estimator for the nanosatellites specifically for the upcoming CUBESAT, ICUBE-1 of the Institute of Space Technology (IST), Islamabad, Pakistan. The ICUBE mission is designed for the low earth orbit at the approximate height of 700KM. The presented research endeavor designs the Keplarian elements for ICUBE-1 orbit while incorporating the mission requirements and propagates the orbit using J2 perturbations, The attitude determination system of the ICUBE-1 consists of attitude determination sensors like magnetometer and sun sensor. The Geomagnetic field estimator is developed according to the model of International Geomagnetic Reference Field (IGRF) for comparing the magnetic field measurements by the magnetometer for attitude determination. The output of the propagator namely the Keplarians position and velocity vectors and the magnetic field vectors are compared and verified with the same scenario generated in the  Satellite Tool Kit (STK).

Atrial Fibrillation Analysis Based on Blind Source Separation in 12-lead ECG

Atrial Fibrillation is the most common sustained arrhythmia encountered by clinicians. Because of the invisible waveform of atrial fibrillation in atrial activation for human, it is necessary to develop an automatic diagnosis system. 12-Lead ECG now is available in hospital and is appropriate for using Independent Component Analysis to estimate the AA period. In this research, we also adopt a second-order blind identification approach to transform the sources extracted by ICA to more precise signal and then we use frequency domain algorithm to do the classification. In experiment, we gather a significant result of clinical data.

Video Matting based on Background Estimation

This paper presents a video matting method, which extracts the foreground and alpha matte from a video sequence. The objective of video matting is finding the foreground and compositing it with the background that is different from the one in the original image. By finding the motion vectors (MVs) using a sliced block matching algorithm (SBMA), we can extract moving regions from the video sequence under the assumption that the foreground is moving and the background is stationary. In practice, foreground areas are not moving through all frames in an image sequence, thus we accumulate moving regions through the image sequence. The boundaries of moving regions are found by Canny edge detector and the foreground region is separated in each frame of the sequence. Remaining regions are defined as background regions. Extracted backgrounds in each frame are combined and reframed as an integrated single background. Based on the estimated background, we compute the frame difference (FD) of each frame. Regions with the FD larger than the threshold are defined as foreground regions, boundaries of foreground regions are defined as unknown regions and the rest of regions are defined as backgrounds. Segmentation information that classifies an image into foreground, background, and unknown regions is called a trimap. Matting process can extract an alpha matte in the unknown region using pixel information in foreground and background regions, and estimate the values of foreground and background pixels in unknown regions. The proposed video matting approach is adaptive and convenient to extract a foreground automatically and to composite a foreground with a background that is different from the original background.

Straightness Error Compensation Servo-system for Single-axis Linear Motor Stage

Since straightness error of linear motor stage is hardly dependent upon machining accuracy and assembling accuracy, there is limit on maximum realizable accuracy. To cope with this limitation, this paper proposed a servo system to compensate straightness error of a linear motor stage. The servo system is mounted on the slider of the linear motor stage and moves in the direction of the straightness error so as to compensate the error. From position dependency and repeatability of the straightness error of the slider, a feedforward compensation control is applied to the platform servo control. In the consideration of required fine positioning accuracy, a platform driven by an electro-magnetic actuator is suggested and a sliding mode control was applied. The effectiveness of the sliding mode control was verified along with some experimental results.

Improving the Shunt Active Power Filter Performance Using Synchronous Reference Frame PI Based Controller with Anti-Windup Scheme

In this paper the reference current for Voltage Source Converter (VSC) of the Shunt Active Power Filter (SAPF) is generated using Synchronous Reference Frame method, incorporating the PI controller with anti-windup scheme. The proposed method improves the harmonic filtering by compensating the winding up phenomenon caused by the integral term of the PI controller. Using Reference Frame Transformation, the current is transformed from om a - b - c stationery frame to rotating 0 - d - q frame. Using the PI controller, the current in the 0 - d - q frame is controlled to get the desired reference signal. A controller with integral action combined with an actuator that becomes saturated can give some undesirable effects. If the control error is so large that the integrator saturates the actuator, the feedback path becomes ineffective because the actuator will remain saturated even if the process output changes. The integrator being an unstable system may then integrate to a very large value, the phenomenon known as integrator windup. Implementing the integrator anti-windup circuit turns off the integrator action when the actuator saturates, hence improving the performance of the SAPF and dynamically compensating harmonics in the power network. In this paper the system performance is examined with Shunt Active Power Filter simulation model.

Effect of Pectinase on the Physico-Chemical Properties of Juice from Pawpaw (Carica papaya) Fruits

A procedure for the preparation of clarified Pawpaw Juice was developed. About 750ml Pawpaw pulp was measured into 2 measuring cylinders A & B of capacity 1 litre heated to 400C, cooled to 200C. 30mls pectinase was added into cylinder A, while 30mls distilled water was added into cylinder B. Enzyme treated sample (A) was allowed to digest for 5hours after which it was heated to 900C for 15 minutes to inactivate the enzyme. The heated sample was cooled and with the aid of a mucillin cloth the pulp was filtered to obtain the clarified pawpaw juice. The juice was filled into 100ml plastic bottles, pasteurized at 950C for 45 minutes, cooled and stored at room temperature. The sample treated with 30mls distilled water also underwent the same process. Freshly pasteurized sample was analyzed for specific gravity, titratable acidity, pH, sugars and ascorbic acid. The remaining sample was then stored for 2 weeks and the above analyses repeated. There were differences in the results of the freshly pasteurized samples and stored sample in pH and ascorbic acid levels, also sample treated with pectinase yielded higher volumes of juice than that treated with distilled water.

Pipelines Monitoring System Using Bio-mimetic Robots

Recently there has been a growing interest in the field of bio-mimetic robots that resemble the behaviors of an insect or an aquatic animal, among many others. One of various bio-mimetic robot applications is to explore pipelines, spotting any troubled areas or malfunctions and reporting its data. Moreover, the robot is able to prepare for and react to any abnormal routes in the pipeline. Special types of mobile robots are necessary for the pipeline monitoring tasks. In order to move effectively along a pipeline, the robot-s movement will resemble that of insects or crawling animals. When situated in massive pipelines with complex routes, the robot places fixed sensors in several important spots in order to complete its monitoring. This monitoring task is to prevent a major system failure by preemptively recognizing any minor or partial malfunctions. Areas uncovered by fixed sensors are usually impossible to provide real-time observation and examination, and thus are dependent on periodical offline monitoring. This paper proposes a monitoring system that is able to monitor the entire area of pipelines–with and without fixed sensors–by using the bio-mimetic robot.