Comparison of Alternative Models to Predict Lean Meat Percentage of Lamb Carcasses

The objective of this study was to develop and compare alternative prediction equations of lean meat proportion (LMP) of lamb carcasses. Forty (40) male lambs, 22 of Churra Galega Bragançana Portuguese local breed and 18 of Suffolk breed were used. Lambs were slaughtered, and carcasses weighed approximately 30 min later in order to obtain hot carcass weight (HCW). After cooling at 4º C for 24-h a set of seventeen carcass measurements was recorded. The left side of carcasses was dissected into muscle, subcutaneous fat, inter-muscular fat, bone, and remainder (major blood vessels, ligaments, tendons, and thick connective tissue sheets associated with muscles), and the LMP was evaluated as the dissected muscle percentage. Prediction equations of LMP were developed, and fitting quality was evaluated through the coefficient of determination of estimation (R2 e) and standard error of estimate (SEE). Models validation was performed by k-fold crossvalidation and the coefficient of determination of prediction (R2 p) and standard error of prediction (SEP) were computed. The BT2 measurement was the best single predictor and accounted for 37.8% of the LMP variation with a SEP of 2.30%. The prediction of LMP of lamb carcasses can be based simple models, using as predictors the HCW and one fat thickness measurement.

Comparison of Two Airfoil Sections for Application in Straight-Bladed Darrieus VAWT

This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed Darrieus-type vertical axis wind turbine depending on blade geometrical section. It consists of an analytical code coupled to a solid modeling software, capable of generating the desired blade geometry based on the desired blade design geometric parameters. Such module is then linked to a finite volume commercial CFD code for the calculation of rotor performance by integration of the aerodynamic forces along the perimeter of each blade for a full period of revolution.After describing and validating the computational model with experimental data, the results of numerical simulations are proposed on the bases of two candidate airfoil sections, that is a classical symmetrical NACA 0021 blade profile and the recently developed DU 06-W-200 non-symmetric and laminar blade profile.Through a full CFD campaign of analysis, the effects of blade geometrical section on angle of attack are first investigated and then the overall rotor torque and power are analyzed as a function of blade azimuthal position, achieving a numerical quantification of the influence of airfoil geometry on overall rotor performance.

Overview of CARDIOSENSOR Project on the Development of a Nanosensor for Assessing the Risk of Cardiovascular Disease

This paper aims at overviewing the topics of a research project (CARDIOSENSOR) on the field of health sciences (biomaterials and biomedical engineering). The project has focused on the development of a nanosensor for the assessment of the risk of cardiovascular diseases by the monitoring of C-reactive protein (CRP), which has been currently considered as the best validated inflammatory biomarker associated to cardiovascular diseases. The project involves tasks such as: 1) the development of sensor devices based on field effect transistors (FET): assembly, optimization and validation; 2) application of sensors to the detection of CRP in standard solutions and comparison with enzyme-linked immunosorbent assay (ELISA); and 3) application of sensors to real samples such as blood and saliva and evaluation of their ability to predict the risk of cardiovascular disease.

Multiresolution Approach to Subpixel Registration by Linear Approximation of PSF

Linear approximation of point spread function (PSF) is a new method for determining subpixel translations between images. The problem with the actual algorithm is the inability of determining translations larger than 1 pixel. In this paper a multiresolution technique is proposed to deal with the problem. Its performance is evaluated by comparison with two other well known registration method. In the proposed technique the images are downsampled in order to have a wider view. Progressively decreasing the downsampling rate up to the initial resolution and using linear approximation technique at each step, the algorithm is able to determine translations of several pixels in subpixel levels.

A Scheme of Model Verification of the Concurrent Discrete Wavelet Transform (DWT) for Image Compression

The scientific community has invested a great deal of effort in the fields of discrete wavelet transform in the last few decades. Discrete wavelet transform (DWT) associated with the vector quantization has been proved to be a very useful tool for the compression of image. However, the DWT is very computationally intensive process requiring innovative and computationally efficient method to obtain the image compression. The concurrent transformation of the image can be an important solution to this problem. This paper proposes a model of concurrent DWT for image compression. Additionally, the formal verification of the model has also been performed. Here the Symbolic Model Verifier (SMV) has been used as the formal verification tool. The system has been modeled in SMV and some properties have been verified formally.

A Sensorless Robust Tracking Control of an Implantable Rotary Blood Pump for Heart Failure Patients

Physiological control of a left ventricle assist device (LVAD) is generally a complicated task due to diverse operating environments and patient variability. In this work, a tracking control algorithm based on sliding mode and feed forward control for a class of discrete-time single input single output (SISO) nonlinear uncertain systems is presented. The controller was developed to track the reference trajectory to a set operating point without inducing suction in the ventricle. The controller regulates the estimated mean pulsatile flow Qp and mean pulsatility index of pump rotational speed PIω that was generated from a model of the assist device. We recall the principle of the sliding mode control theory then we combine the feed-forward control design with the sliding mode control technique to follow the reference trajectory. The uncertainty is replaced by its upper and lower boundary. The controller was tested in a computer simulation covering two scenarios (preload and ventricular contractility). The simulation results prove the effectiveness and the robustness of the proposed controller

eTax Filing and Service Quality: The Case of the Revenue Online Service

This paper describes an ongoing study into the quality of service provided by the Irish Revenue Commisioners- online tax filing and collection system. The Irish Revenue On-Line Service (ROS) site has won several awards. In this study, a version of the widely use SERVQUAL measuring instrument, adapted for use with online services, has been modified for the specific case of ROS. In this paper, the theory behind this instrument is set out, the particular problems of evaluating revenue collecting online are examined and the rationale for this approach is explained.

The Impact of Financial Risks on Profitability of Malaysian Commercial Banks: 1996-2005

This paper examines the relationship between financial risks and profitability of the conventional and Islamic banks in Malaysia for the period between 1996 and 2005. The measures of profitability that have been used in the study are the return on equity (ROE) and return on assets (ROA) while the financial risks are credit risk, interest rate risk and liquidity risks. This study employs panel data regression analysis of Generalised Least Squares of fixed effects and random effects models. It was found that credit risk has a significant impact on ROA and ROE for the conventional as well as the Islamic banks. The relationship between interest rate risk and ROE were found to be weakly significant for the conventional banks and insignificant for the Islamic banks. The effect of interest rate risk on ROA is significant for the conventional banks. Liquidity risk was found to have an insignificant impact on both profitability measures.

Automation of Packing Cell in Fresh Fish Facilities

The problem discussed in this paper involves packing fresh fish fileet of the northern Cod into a standard square container. The fish is first cleaned and split and then collected on a belt ready to be stacked in a container. The aim of our work is to pack the fish into the container with constraints on the amount of overlap allowed for the fileets. The current focus is to design a packing cell that can be real-time and of practical use, while finding the optimal solution to the degree of overlap and minimise the unused space of the container.

Water Reallocation Policies – The Importance of Rural and Urban Differences in Alberta, Canada

There is currently intensive debate in Alberta, Canada, regarding rural to urban water reallocation. This paper explores the demographic and attitudinal influences that are associated with the acceptance of water reallocation policies and whether such acceptance differs between urban and rural residents. We investigate three policy orientations in regards to water policies: i) government intervention; ii) environmental protection; and iii) protecting irrigators- water rights. We find that urban dwellers are more likely to favour government intervention while rural dwellers are more likely to support policies that aim at protecting irrigators- water rights. While urban dwellers are also more likely to favour environmental protection, the difference is not statistically significant. We also find that other factors have a significant impact on policy choice irrespective of residence such as demographic and socioeconomic factors as well as the values people hold toward water and the environment.

Experimental Investigation of Convective Heat Transfer and Pressure Drop of Al2O3/Water Nanofluid in Laminar Flow Regime inside a Circular Tube

In the present study, Convective heat transfer coefficient and pressure drop of Al2O3/water nanofluid in laminar flow regime under constant heat flux conditions inside a circular tube were experimentally investigated. Al2O3/water nanofluid with 0.5% and 1% volume concentrations with 15 nm diameter nanoparticles were used as working fluid. The effect of different volume concentrations on convective heat transfer coefficient and friction factor was studied. The results emphasize that increasing of particle volume concentration leads to enhance convective heat transfer coefficient. Measurements show the average heat transfer coefficient enhanced about 11-20% with 0.5% volume concentration and increased about 16-27% with 1% volume concentration compared to distilled water. In addition, the convective heat transfer coefficient of nanofluid enhances with increase in heat flux. From the results, the average ratio of (fnf/fbf) was about 1.10 for 0.5% volume concentration. Therefore, there is no significant increase in friction factor for nanofluids.

Assessing the Value of Virtual Worlds for Post- Secondary Instructors: A Survey of Innovators, Early Adopters and the Early Majority in Second Life

The purpose of this study was to assess the value of Second Life among post-secondary instructors with experience using Second Life as an educational tool. Using Everett Rogers-s diffusion of innovations theory, survey respondents (N = 162), were divided into three adopter categories: innovators, early adopters and the early majority. Respondents were from 15 countries and 25 academic disciplines, indicating the considerable potential this innovation has to be adopted across many different borders and in many areas of academe. Nearly 94% of respondents said they plan to use Second Life again as an educational tool. However, no significant differences were found in instructors- levels of satisfaction with Second Life as an educational tool or their perceived effect on student learning across adopter categories. On the other hand, instructors who conducted class fully in Second Life were significantly more satisfied than those who used Second Life as only a small supplement to a real-world class. Overall, personal interest factors, rather than interpersonal communication factors, most influenced respondents- decision to adopt Second Life as an educational tool. In light of these findings, theoretical implications are discussed and practical suggestions are provided.

Ageing Assessment of Insulation Systems by Absorption/Resorption Currents

Degradation of polymeric insulation systems of electrical equipments increases the space charge density and the concentration of electrical dipoles. By consequence, the maximum values and the slopes of absorption/resorption (A/R) currents can change with insulation systems ageing. In this paper, an analysis of the nature of the A/R currents and the importance of their components, especially the polarization current and the current given by the space charge, is presented. The experimental study concerns the A/R currents measurements of plane samples (made from CALMICAGLAS tapes), virgin and thermally accelerated aged. The obtained results show that the ageing process produces an increase of the values and a decrease of shapes of the A/R currents. Finally, the possibility of estimating insulations ageing state and lifetime from A/R currents measurements is discussed.

CFD Flow and Heat Transfer Simulation for Empty and Packed Fixed Bed Reactor in Catalytic Cracking of Naphtha

This work aims to test the application of computational fluid dynamics (CFD) modeling to fixed bed catalytic cracking reactors. Studies of CFD with a fixed bed design commonly use a regular packing with N=2 to define bed geometry. CFD allows us to obtain a more accurate view of the fluid flow and heat transfer mechanisms present in fixed bed equipment. Naphtha was used as feedstock and the reactor length was 80cm. It is divided in three sections that catalyst bed packed in the middle section of the reactor. The reaction scheme was involved one primary reaction and 24 secondary reactions. Because of high CPU times in these simulations, parallel processing have been used. In this study the coke formation process in fixed bed and empty tube reactor was simulated and coke in these reactors are compared. In addition, the effect of steam ratio and feed flow rate on coke formation was investigated.

A Multi-Signature Scheme based on Coding Theory

In this paper we propose two first non-generic constructions of multisignature scheme based on coding theory. The first system make use of the CFS signature scheme and is secure in random oracle while the second scheme is based on the KKS construction and is a few times. The security of our construction relies on a difficult problems in coding theory: The Syndrome Decoding problem which has been proved NP-complete [4].

Decolorization of Reactive Black 5 and Reactive Red 198 using Nanoscale Zerovalent Iron

Residual dye contents in textile dyeing wastewater have complex aromatic structures that are resistant to degrade in biological wastewater treatment. The objectives of this study were to determine the effectiveness of nanoscale zerovalent iron (NZVI) to decolorize Reactive Black 5 (RB5) and Reactive Red 198 (RR198) in synthesized wastewater and to investigate the effects of the iron particle size, iron dosage and solution pHs on the destruction of RB5 and RR198. Synthesized NZVI was confirmed by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The removal kinetic rates (kobs) of RB5 (0.0109 min-1) and RR198 (0.0111 min-1) by 0.5% NZVI were many times higher than those of microscale zerovalent iron (ZVI) (0.0007 min-1 and 0.0008 min-1, respectively). The iron dosage increment exponentially increased the removal efficiencies of both RB5 and RR198. Additionally, lowering pH from 9 to 5 increased the decolorization kinetic rates of both RB5 and RR198 by NZVI. The destruction of azo bond (N=N) in the chromophore of both reactive dyes led to decolorization of dye solutions.

Improvement of Bit-Error-Rate in Optical Fiber Receivers

In this paper, a post processing scheme is suggested for improvement of Bit Error-Rate (BER) in optical fiber transmission receivers. The developed scheme has been tested on optical fiber systems operating with a non-return-to-zero (NRZ) format at transmission rates of up to 10Gbps. The transmission system considered is based on well known transmitters and receivers blocks operating at wavelengths in the region of 1550 nm using a standard single mode fiber. Performance of improved detected signals has been evaluated via the analysis of quality factor and computed bit error rates. Numerical simulations have shown a noticeable improvement of the system BER after implementation of the suggested post processing operation on the detected electrical signals.

An Optimal Control Problem for Rigid Body Motions on Lie Group SO(2, 1)

In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimize the integral of the square norm of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions.

Feature Selection Methods for an Improved SVM Classifier

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, three feature selection methods are evaluated: Random Selection, Information Gain (IG) and Support Vector Machine feature selection (called SVM_FS). We show that the best results were obtained with SVM_FS method for a relatively small dimension of the feature vector. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).

A Graph-Based Approach for Placement of No-Replicated Databases in Grid

On a such wide-area environment as a Grid, data placement is an important aspect of distributed database systems. In this paper, we address the problem of initial placement of database no-replicated fragments in Grid architecture. We propose a graph based approach that considers resource restrictions. The goal is to optimize the use of computing, storage and communication resources. The proposed approach is developed in two phases: in the first phase, we perform fragment grouping using knowledge about fragments dependency and, in the second phase, we determine an efficient placement of the fragment groups on the Grid. We also show, via experimental analysis that our approach gives solutions that are close to being optimal for different databases and Grid configurations.