Short-Term Electric Load Forecasting Using Multiple Gaussian Process Models

This paper presents a Gaussian process model-based short-term electric load forecasting. The Gaussian process model is a nonparametric model and the output of the model has Gaussian distribution with mean and variance. The multiple Gaussian process models as every hour ahead predictors are used to forecast future electric load demands up to 24 hours ahead in accordance with the direct forecasting approach. The separable least-squares approach that combines the linear least-squares method and genetic algorithm is applied to train these Gaussian process models. Simulation results are shown to demonstrate the effectiveness of the proposed electric load forecasting.

Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems

This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.

GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

CART Method for Modeling the Output Power of Copper Bromide Laser

This paper examines the available experiment data for a copper bromide vapor laser (CuBr laser), emitting at two wavelengths - 510.6 and 578.2nm. Laser output power is estimated based on 10 independent input physical parameters. A classification and regression tree (CART) model is obtained which describes 97% of data. The resulting binary CART tree specifies which input parameters influence considerably each of the classification groups. This allows for a technical assessment that indicates which of these are the most significant for the manufacture and operation of the type of laser under consideration. The predicted values of the laser output power are also obtained depending on classification. This aids the design and development processes considerably.

Small Sample Bootstrap Confidence Intervals for Long-Memory Parameter

The log periodogram regression is widely used in empirical applications because of its simplicity, since only a least squares regression is required to estimate the memory parameter, d, its good asymptotic properties and its robustness to misspecification of the short term behavior of the series. However, the asymptotic distribution is a poor approximation of the (unknown) finite sample distribution if the sample size is small. Here the finite sample performance of different nonparametric residual bootstrap procedures is analyzed when applied to construct confidence intervals. In particular, in addition to the basic residual bootstrap, the local and block bootstrap that might adequately replicate the structure that may arise in the errors of the regression are considered when the series shows weak dependence in addition to the long memory component. Bias correcting bootstrap to adjust the bias caused by that structure is also considered. Finally, the performance of the bootstrap in log periodogram regression based confidence intervals is assessed in different type of models and how its performance changes as sample size increases.

A New Approach for Classifying Large Number of Mixed Variables

The issue of classifying objects into one of predefined groups when the measured variables are mixed with different types of variables has been part of interest among statisticians in many years. Some methods for dealing with such situation have been introduced that include parametric, semi-parametric and nonparametric approaches. This paper attempts to discuss on a problem in classifying a data when the number of measured mixed variables is larger than the size of the sample. A propose idea that integrates a dimensionality reduction technique via principal component analysis and a discriminant function based on the location model is discussed. The study aims in offering practitioners another potential tool in a classification problem that is possible to be considered when the observed variables are mixed and too large.

Persian Printed Numerals Classification Using Extended Moment Invariants

Classification of Persian printed numeral characters has been considered and a proposed system has been introduced. In representation stage, for the first time in Persian optical character recognition, extended moment invariants has been utilized as characters image descriptor. In classification stage, four different classifiers namely minimum mean distance, nearest neighbor rule, multi layer perceptron, and fuzzy min-max neural network has been used, which first and second are traditional nonparametric statistical classifier. Third is a well-known neural network and forth is a kind of fuzzy neural network that is based on utilizing hyperbox fuzzy sets. Set of different experiments has been done and variety of results has been presented. The results showed that extended moment invariants are qualified as features to classify Persian printed numeral characters.

Strategy for Optimal Configuration Design of Existing Structures by Topology and Shape Optimization Tools

A strategy is implemented to find the improved configuration design of an existing aircraft structure by executing topology and shape optimizations. Structural analysis of the Initial Design Space is performed in ANSYS under the loads pertinent to operating and ground conditions. By using the FEA results and data, an initial optimized layout configuration is attained by exploiting nonparametric topology optimization in TOSCA software. Topological optimized surfaces are then smoothened and imported in ANSYS to develop the geometrical features. Nodes at the critical locations of resulting voids are selected for sketching rough profiles. Rough profiles are further refined and CAD feasible geometric features are generated. The modified model is then analyzed under the same loadings and constraints as defined for topology optimization. Shape at the peak stress concentration areas are further optimized by exploiting the shape optimization in TOSCA.shape module. The harmonized stressed model with the modified surfaces is then imported in CATIA to develop the final design.

Research on Regional Energy Saving Potential Based on Nonparametric Radial Adjustment and Slack Adjustment

Taking the provincial capital, labor and energy as inputs, regional GDP as output from 1995 to 2007, the paper quantifies the vertical and lateral energy saving potential by introducing the radial adjustment and slack adjustment of DEA. The results show that by the vertical, the achievement of energy saving in 2007 is better than their respective historical performances. By horizontal, in 2007 it can be found that Tianjin, Liaoning, Shanghai and Yunnan do better in energy saving than other provinces. In national wide, the higher of energy efficiency, the larger of per capita GDP and the proportion of the tertiary industry in the national economy, the more open to the outside, the lower the energy saving potential demonstrates, while the energy endowment has negative effect on energy saving potential.

Environmental Efficiency of Electric Power Industry of the United States: A Data Envelopment Analysis Approach

Importance of environmental efficiency of electric power industry stems from high demand for energy combined with global warming concerns. It is especially essential for the world largest economies like that of the United States. The paper introduces a Data Envelopment Analysis (DEA) model of environmental efficiency using indicators of fossil fuels utilization, emissions rate, and electric power losses. Using DEA is advantageous in this situation over other approaches due to its nonparametric nature. The paper analyzes data for the period of 1990 - 2006 by comparing actual yearly levels in each dimension with the best values of partial indicators for the period. As positive factors of efficiency, tendency to the decline in emissions rates starting 2000, and in electric power losses starting 2004 may be mentioned together with increasing trend of fuel utilization starting 1999. As a result, dynamics of environmental efficiency is positive starting 2002. The main concern is the decline in fossil fuels utilization in 2006. This negative change should be reversed to comply with ecological and economic requirements.

A Bootstrap's Reliability Measure on Tests of Hypotheses

Bootstrapping has gained popularity in different tests of hypotheses as an alternative in using asymptotic distribution if one is not sure of the distribution of the test statistic under a null hypothesis. This method, in general, has two variants – the parametric and the nonparametric approaches. However, issues on reliability of this method always arise in many applications. This paper addresses the issue on reliability by establishing a reliability measure in terms of quantiles with respect to asymptotic distribution, when this is approximately correct. The test of hypotheses used is Ftest. The simulated results show that using nonparametric bootstrapping in F-test gives better reliability than parametric bootstrapping with relatively higher degrees of freedom.

Nonparametric Control Chart Using Density Weighted Support Vector Data Description

In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.

Region Segmentation based on Gaussian Dirichlet Process Mixture Model and its Application to 3D Geometric Stricture Detection

In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. So, It is important to segment ROI (region of interest) from input scenes as a preprocessing step for geometric stricture detection in 3D scene. In this paper, we propose a method for segmenting ROI based on tensor voting and Dirichlet process mixture model. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting and Dirichlet process mixture model to a image segmentation. The tensor voting is used based on the fact that homogeneous region in an image are usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. The proposed approach is a novel nonparametric Bayesian segmentation method using Gaussian Dirichlet process mixture model to automatically segment various natural scenes. Finally, our method can label regions of the input image into coarse categories: “ground", “sky", and “vertical" for 3D application. The experimental results show that our method successfully segments coarse regions in many complex natural scene images for 3D.

Segmentation of Images through Clustering to Extract Color Features: An Application forImage Retrieval

This paper deals with the application for contentbased image retrieval to extract color feature from natural images stored in the image database by segmenting the image through clustering. We employ a class of nonparametric techniques in which the data points are regarded as samples from an unknown probability density. Explicit computation of the density is avoided by using the mean shift procedure, a robust clustering technique, which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters. A non-parametric technique for the recovery of significant image features is presented and segmentation module is developed using the mean shift algorithm to segment each image. In these algorithms, the only user set parameter is the resolution of the analysis and either gray level or color images are accepted as inputs. Extensive experimental results illustrate excellent performance.

The Use of Artificial Neural Network in Option Pricing: The Case of S and P 100 Index Options

Due to the increasing and varying risks that economic units face with, derivative instruments gain substantial importance, and trading volumes of derivatives have reached very significant level. Parallel with these high trading volumes, researchers have developed many different models. Some are parametric, some are nonparametric. In this study, the aim is to analyse the success of artificial neural network in pricing of options with S&P 100 index options data. Generally, the previous studies cover the data of European type call options. This study includes not only European call option but also American call and put options and European put options. Three data sets are used to perform three different ANN models. One only includes data that are directly observed from the economic environment, i.e. strike price, spot price, interest rate, maturity, type of the contract. The others include an extra input that is not an observable data but a parameter, i.e. volatility. With these detail data, the performance of ANN in put/call dimension, American/European dimension, moneyness dimension is analyzed and whether the contribution of the volatility in neural network analysis make improvement in prediction performance or not is examined. The most striking results revealed by the study is that ANN shows better performance when pricing call options compared to put options; and the use of volatility parameter as an input does not improve the performance.

A Comparison of the Nonparametric Regression Models using Smoothing Spline and Kernel Regression

This paper study about using of nonparametric models for Gross National Product data in Turkey and Stanford heart transplant data. It is discussed two nonparametric techniques called smoothing spline and kernel regression. The main goal is to compare the techniques used for prediction of the nonparametric regression models. According to the results of numerical studies, it is concluded that smoothing spline regression estimators are better than those of the kernel regression.

Parametric and Nonparametric Analysis of Breast Cancer Treatments

The objective of the present research manuscript is to perform parametric, nonparametric, and decision tree analysis to evaluate two treatments that are being used for breast cancer patients. Our study is based on utilizing real data which was initially used in “Tamoxifen with or without breast irradiation in women of 50 years of age or older with early breast cancer" [1], and the data is supplied to us by N.A. Ibrahim “Decision tree for competing risks survival probability in breast cancer study" [2]. We agree upon certain aspects of our findings with the published results. However, in this manuscript, we focus on relapse time of breast cancer patients instead of survival time and parametric analysis instead of semi-parametric decision tree analysis is applied to provide more precise recommendations of effectiveness of the two treatments with respect to reoccurrence of breast cancer.

Comparison of Parametric and Nonparametric Techniques for Non-peak Traffic Forecasting

Accurately predicting non-peak traffic is crucial to daily traffic for all forecasting models. In the paper, least squares support vector machines (LS-SVMs) are investigated to solve such a practical problem. It is the first time to apply the approach and analyze the forecast performance in the domain. For comparison purpose, two parametric and two non-parametric techniques are selected because of their effectiveness proved in past research. Having good generalization ability and guaranteeing global minima, LS-SVMs perform better than the others. Providing sufficient improvement in stability and robustness reveals that the approach is practically promising.

Efficient System for Speech Recognition using General Regression Neural Network

In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.