CART Method for Modeling the Output Power of Copper Bromide Laser

This paper examines the available experiment data for a copper bromide vapor laser (CuBr laser), emitting at two wavelengths - 510.6 and 578.2nm. Laser output power is estimated based on 10 independent input physical parameters. A classification and regression tree (CART) model is obtained which describes 97% of data. The resulting binary CART tree specifies which input parameters influence considerably each of the classification groups. This allows for a technical assessment that indicates which of these are the most significant for the manufacture and operation of the type of laser under consideration. The predicted values of the laser output power are also obtained depending on classification. This aids the design and development processes considerably.





References:
[1] N. V. Sabotinov, "Metal vapor lasers," in: Gas Lasers, M. Endo R.and
F. Walter, Eds., Boca Raton: CRC Press, 2006, pp. 449-494.
[2] P. G. Foster, Industrial applications of copper bromide laser technology,
Ph.D. Dissertation, University of Adelaide, School of Chemistry and
Physics, Dept. of Physics and Mathematical Physics, Australia, 2005.
[3] M. J. Kushner and B. E. Warner, "Large bore copper vapor lasers:
Kinetics and scaling issues," Journal of Applied Physics, vol. 54, pp.
2970-2982, 1983.
[4] Encyclopedia of Low-temperature Plasma, Series B, vol. 7: Numerical
modeling of low-temperature plasmas, M. Ianus, Ed., Moscow, 2004 (in
Russian).
[5] A. M. Boichenko, G. S. Evtushenko, and S. N. Torgaev, "Simulation of
a CuBr laser," Laser Physics, Springer, vol. 18, pp. 1522-1525, 2008.
[6] S. G. Gocheva-Ilieva and I. P. Iliev, "Statistical models of characteristics
of metal vapor lasers," New York: Nova Science Publishers, Inc., 2011.
[7] I. P. Iliev, S. G. Gocheva-Ilieva, D. N. Astadjov, N. P. Denev, and N. V.
Sabotinov, "Statistical analysis of the CuBr laser efficiency
improvement," Optics and Laser Technology, Elsevier, vol. 40, no. 4,
pp. 641-646, 2008.
[8] I. P., Iliev S. G. Gocheva-Ilieva, D. N. Astadjov, N. P. Denev, and N. V.
Sabotinov, "Statistical approach in planning experiments with a copper
bromide vapor laser," Quantum Electronics, vol. 38, no. 5, pp. 436-440,
2008.
PNE
PH2
DR
PIN
C
PIN
PIN
PRF
PRF
C
PIN
PIN
[9] I. P. Iliev, S.G. Gocheva-Ilieva, and N.V. Sabotinov, "Classification
analysis of CuBr laser parameters," Quantum Electron, vol. 39, pp. 143-
146, 2009.
[10] S. G. Gocheva-Ilieva and I. P. Iliev, "Parametric and nonparametric
empirical regression models: case study of copper bromide laser
generation," Mathematical Problems in Engineering, Hindawi
Publishing Corporation, vol. 2010, Article ID 697687, 15 pages, 2010.
[11] S. G. Gocheva-Ilieva and I. P. Iliev, "Nonlinear regression model of
copper bromide laser generation," in Proc. COMPSTAT'2010, Y.
Lechevallier, G. Saporta, Eds., 19th Int. Conf. Comput. Statistics, Paris -
France, August 22-27, Physica-Verlag, Springer_ebook, pp. 1063-1070,
2010.
[12] I. P. Iliev, D. S. Voynikova, and S. G. Gocheva-Ilieva, "Simulation of
the output power of copper bromide lasers by the MARS method,"
Quantum Electronics, vol. 42, No 4, pp. 298-303, 2012.
[13] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees, Belmont: Wadsworth International, 1984.
[14] D. Steinberg, Dan and Phillip Colla, CART: Tree-Structured Non-
Parametric Data Analysis, San Diego: Salford Systems, 1995.
[15] R. Nisbet, J. Elder, and G. Miner, Handbook of statistical analysis and
data mining applications, Elsevier Academic Press, Burlington, 2009.
Ch. 11.
[16] CART® Classification and Regression Trees, 2012. http://www.salfordsystems.
com/en/products/cart, Accessed 10 Jan 2013.
[17] N. V. Sabotinov, P. K. Telbizov, and S. D. Kalchev, Bulgarian patent N
28674, 1975.
[18] N. V. Sabotinov, N. K. Vuchkov, and D. N. Astadjov, "Gas laser
discharge tube with copper halide vapors," United States Patent
4635271, 1987.
[19] D. N. Astadjov, N. V. Sabotinov, and N. K. Vuchkov, "Effect of
hydrogen on CuBr laser power and efficiency," Opt. Commun. vol. 56
pp. 279-282, 1985.
[20] D. N. Astadjov, K. D. Dimitrov, C. E. Little, and N. V. Sabotinov, "A
CuBr laser with 1.4 W/cm3 average output power," IEEE J. Quant.
Electronics, vol. 30, pp.1358-1360, 1994.
[21] V. M. Stoilov, D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov,
"High spatial intensity 10 W- CuBr laser with hydrogen additives," Opt.
and Quant. Electron. vol. 32, pp. 1209-1217, 2000.
[22] NATO contract SfP, 97 2685, 50W Copper Bromide laser, 2000.
[23] D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. L. Kirkov, C. E. Little,
N. Little, et al., "Influence on operating characteristics of scaling sealedoff
CuBr lasers in active length," Opt. Commun. vol. 135, pp. 289-294,
1997.
[24] K. D. Dimitrov, N. V. Sabotinov, "High-power and high-efficiency
copper bromide vapor laser," SPIE, vol. 3052, pp. 126-130, 1996.
[25] D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. K. Kirkov, C. E. Little,
N. V. Sabotinov et al., "Copper bromide laser of 120-W average output
power," IEEE J. Quant. Electron. vol. 33, pp. 705-709, 1997.
[26] N. P. Denev, D. N. Astadjov, and N. V. Sabotinov, "Analysis of the
copper bromide laser efficiency," in Proc. of Fourth Intern. Symp. on
Laser Technologies and Lasers-2005, Plovdiv, Bulgaria, pp. 153-156,
2006.
[27] L. Leech, K. C. Barrett, G. A. Morgan, SPSS for Intermediate Statistics:
Use and Interpretation, 2nd ed., Lawrence Erlbaum Associates
Publishers, New Jersey, 2005, ch. 2.
[28] A. J. Izenman, Modern Multivariate Statistical Techniques Regression,
Classification, and Manifold Learning, New York: Springer, 2008, Ch.
9.