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Abstract—This paper examines the available experiment data for 

a copper bromide vapor laser (CuBr laser), emitting at two 

wavelengths - 510.6 and 578.2nm. Laser output power is estimated 

based on 10 independent input physical parameters. A classification 

and regression tree (CART) model is obtained which describes 97% 

of data. The resulting binary CART tree specifies which input 

parameters influence considerably each of the classification groups. 

This allows for a technical assessment that indicates which of these 

are the most significant for the manufacture and operation of the type 

of laser under consideration. The predicted values of the laser output 

power are also obtained depending on classification. This aids the 

design and development processes considerably.   

 

Keywords—Classification and regression trees (CART), Copper 

Bromide laser (CuBr laser), laser generation, nonparametric 

statistical model.  

I. INTRODUCTION 

NE of the practical approaches when studying the 

behavior of a particular complex technical system is the 

use and retrieval of the available experiment data. These data 

contain significant information related to the working 

processes and the relationships between individual 

components of the real system - technical parameters 

(dimensions, construction materials), operating parameters, 

service life, etc. With the help of suitable statistical methods 

and techniques, these relationships can be expressed, the 

functioning of the system can be described and analyzed, and 

its future behavior and development predicted.  

This paper examines a copper bromide vapor laser which is 

a type of metal vapor laser in the visible zone. It is considered 

that the laser in question has been studied in detail but due to 

its specific characteristics and wide range of applications, it 

continues to be the subject of scientific and commercial 

interest, and therefore, development [1], [2]. Alongside 

engineering design, the modeling (analytical, numerical, 

statistical, simulating or other types) of devices or technical 

systems is also widely applied in practice. Standard 

mathematical modeling includes systems of differential and 
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integral equations, and other mathematical methods, 

describing the system and allowing the calculation of solutions 

for the processes, occurring within the system under 

investigation, as well as the performance of simulations. Here, 

the most widely used types of models are kinetic models. 

These describe the particles and processes occurring in the 

operating laser medium. There is a large number of such 

publications for metal vapor lasers, including for copper 

bromide vapor lasers, see for instance [3]–[5]. Although 

kinetic models describe the major processes within the laser 

medium and the interactions between particles using hundreds 

of equations, a general drawback of theirs is that they cannot 

provide a complex direct estimate of output characteristics 

such as the average output power, laser efficiency, service life, 

etc.  

During the last few years, models were developed and 

applied on the basis of accumulated experiment data, 

providing models of statistical relationships, dependencies, 

and classifications of basis laser parameters, for which 

experiment data is available. Traditional parametric models of 

metal vapor lasers have been developed and analyzed in [6]–

[10]. Multivariate regression with principal components 

analysis, hierarchical cluster analysis, factor analysis, and 

other statistical techniques have been used. A non-linear 

model of output power has been built in [11]. Nonparametric 

models were obtained using the Multivariate Adaptive 

Regression Splines (MARS) method in [6], [11]. In the recent 

paper [12], the models describe over 98% of experiment data 

with a relative accuracy comparable to that of measurements, 

making it possible to predict the output power of future lasers.  

In this paper, another powerful nonparametric modeling 

method - CART (Classification and Regression Trees) - is 

applied to available data for a copper bromide vapor laser. 

This method allows the separation of all observations from the 

considered independent variables in non-interacting groups in 

the form of a binary tree according to the degree of influence 

on the dependent variable. In this study the dependent variable 

is the laser output power.    

General objective of this study is to classify and determine 

the influence of 10 input laser characteristics (supplied power, 

geometric design of the tube, neon pressure, reservoir 

temperature, etc.) on the average output power based on 

available experiment data. For the first time, the powerful 

nonparametric technique CART, described in [13]-[15], is 

applied for data of metal vapor lasers. CART is one of the 

basic data mining algorithms and is widely used for either 

classification or estimation problems (like regression) [15]. 
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In this study the following basic problems are solved: (1) 

building an optimal solution regression tree using CART; (2) 

determining the adequate linear model on the basis of this tree; 

(3) using the model to estimate known experiments; (4) 

validation of model; (5) comparison of results to previous 

parametric and nonparametric models of the same type of 

laser.  

The obtained model describes about 97% of the available 

data and demonstrates very good predictive qualities. This 

approach is oriented to guide the construction and design of 

new copper bromide vapor lasers with increased output power.   

The statistical study has been carried out using the CART 

software package [16]. 

II. OBJECT OF STUDY 

The copper bromide vapor laser is an improved version of a 

pure copper vapor laser. It is the most powerful and effective 

laser in the visible spectrum demonstrating high coherence 

and convergence of the laser beam. We are investigating 

variations of this laser, invented and developed at the 

Laboratory of Metal Vapor Lasers at the Georgi Nadjakov 

Institute of Solid State Physics of the Bulgarian Academy of 

Sciences, Sofia. The first patents related to this type of laser 

are [17], [18]. The copper bromide vapor laser is one of the 12 

laser sources which have a wide range of applications and are 

commercially viable [1], [2]. The development and 

improvement of CuBr lasers is seen as a fundamental step in 

the study of copper lasers as a whole.  

Copper bromide vapor lasers are sources of pulse radiation 

in the visible spectrum (between 400 and 720nm) emitting at 

two wavelengths: green 510.6nm and yellow - 578.2nm. They 

are considered to be high-pulse lasers. Neon is used as a buffer 

gas. In order to improve efficiency, small quantities of 

hydrogen are added. Unlike the high-temperature pure copper 

vapor laser, the copper bromide vapor laser is a low-

temperature one, with an active zone temperature of about 

500°C [1]. The laser tube is made out of quartz glass without 

high-temperature ceramics as a result of which it is 

significantly cheaper and easier to manufacture. The discharge 

is heated by electric current (self-heating laser).  

It produces light impulses tens of nanoseconds long. Its 

main advantages are: short initial heating period, stable laser 

generation, relatively long service life, high values of output 

power and laser efficiency.  

A simple scheme of the laser tube is given in Fig. 1. 

 

 

Fig. 1 Scheme of the laser tube of a copper bromide vapor laser: 1 – 

copper bromide reservoirs, 2 – heat insulation of the active volume, 3 

– porous copper electrodes, 4 – inner rings, 5 – mirrors.  

III. DATA 

This paper takes into account the following 10 independent 

input variables (predictors) and one dependent variable 

(response) - laser output power Pout (W). The independent 

variables are: D (mm) – inner diameter of the laser tube, DR 

(mm) – inner diameter of the ring (without rings, D=DR), 

L(cm) – length of the active zone (distance between the 

electrodes), PIN (kW) – electric power supplied to the 

discharge, PL (kW/cm) - electric power per unit length with 

50% losses, PRF (kHz) – electric pulse repetition frequency,  

PNE (torr) – buffer gas pressure (neon), PH2 (torr) – pressure 

of the added gas (hydrogen), C (nF)  – equivalent capacity of 

the condensation battery, TR (
o
C) – temperature of copper 

bromide reservoirs. 

The study uses the values of these variables taken from n = 

387 experiments, published in [19]–[26]. It needs to be noted 

that the maximum output power achieved is Pout=120 W in an 

experiment where the following values were measured for the 

input parameters as given above: (58, 58, 200, 5, 12.5, 0.6, 

17.5, 20, 1.3, 490) [25]. 

The statistical summary for the whole dataset is given in 

Table I. 

It should be noted that all the variables are not normally 

distributed, which follows from the values of asymmetry 

(skewness) and kurtosis. Especially, from Table I it can be 

seen that the absolute values of the coefficients of skewness 

for 5 variables (PIN, PRF, PNE, C, TR) are very high. Similar 

is observed for the coefficients of kurtosis, where 8 of the 

variables, namely D, DR, L, PH2, PRF, PNE, C, and TR are 

too high. As a rule, following [27] the inequality  

 

2.5
.

>
Skewness

Std Deviation of Skewness
 

 

can be used as a somewhat arbitrary guideline that distribution 

is markedly skewed and it would be prudent to use 

nonparametric statistics. This is the case for all variables of 

experiments described the investigated CuBr laser. However, 

different transformations of our data also showed that their 

distributions are quite different from the normal. 

For this reason, nonparametric methods, including data 

mining methods (CART, MARS, etc.) which have no 

requirements towards the type of data distribution, both as a 

whole and for subsets, are more suitable [15], [28]. 

IV. SHORT DESCRIPTION OF THE CART METHOD 

The CART method algorithm, as indicated by the name, 

solves the classification and regression problem. It was 

developed between 1974-1984 by Leo Breiman, Jerry 

Friedman, Charles Stone and Richard Olshen [13]. 

CART is a nonparametric solution tree technique which 

builds classification or regression trees depending on whether 

the dependent variable is categorical or numerical. In our case, 

this is a classification and regression tree. 
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TABLE I 

DESCRIPTIVE STATISTICS OF THE DATASET OF CUBR LASER 

 Min Max Mean Std. D. Skewness Kurtosis 

 Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error 

D 15.00 58.00 46.59 10.072 -0.809 0.12 1.451 0.25 

DR 4.50 58.00 34.83 18.31 0.265 0.12 -1.602 0.25 

PIN 1.00 5.00 2.10 1.27 1.065 0.12 -0.321 0.25 

L 30.00 200.00 106.59 70.70 0.478 0.12 -1.670 0.25 

PL 5.00 16.67 10.92 2.51 -0.467 0.12 0.183 0.25 

PH2 0.00 0.80 0.36 0.25 -0.416 0.12 -1.430 0.25 

PRF 3.20 125.50 23.24 25.69 3.589 0.12 11.530 0.25 

PNE 8.00 250.00 22.56 24.17 6.389 0.12 46.454 0.25 

C 0.33 4.00 1.33 0.61 2.313 0.12 6.233 0.25 

TR 350.00 590.00 478.22 23.25 -1.673 0.12 7.332 0.25 

Pout 0.25 120.00 34.024 35.57 0.808 0.12 -0.862 0.25 

Valid N  387 

 

The algorithm is intended for the building of a binary 

solutions tree. The output set of observations is divided into 

groups at the end nodes (leaves) of the tree. The goal is to find 

a tree which allows for a good distribution of the data with the 

lowest possible relative error of prediction. Each branch of the 

tree ends with a terminal node and each observation falls into 

exactly one end node, defined by a unique set of rules. 

More specifically, the objective of the regression tree 

approach is to distribute the data in relatively homogeneous 

(small standard deviation) end nodes and to obtain a mean 

observed value at each node in the form of a predicted value. 

The building of a tree starts from a parent node, containing all 

observations. At each step (at each running node) a rule is 

applied to divide the set of observations within the node into 

two subsets according to some condition preset for the current 

independent variable (predictor) 
kX  of the type  

 

k j
X θ≤   or  θ>

k j
X                             (1) 

 

where θ
j
 is the threshold value. If a given observation from 

the current node meets this condition, it is transferred to a 

group in the left hereditary node, and if not - it goes to the 

right hereditary node. In this way, the separation by nodes is 

repeated multiple times until an end node is reached. The 

general criterion for the selection of a predictor variable at 

each node and its threshold value is the minimum deviation 

from all possible predictors and threshold values. Defining a 

given node as a terminal one depends on the minimum error 

achieved as per a preset criterion for the minimum number of 

observations or some other type of restriction [15], [28]. The 

observations which find their way to a given tree node are 

defined by a series of restrictions of the type (1), starting at the 

root of the tree. 

Validation is usually applied when building regression 

trees, since they may be sensitive to random errors in the data. 

This helps correct - shrink - the initial tree, maintaining its 

regression characteristics and accuracy. In the case of fewer 

observations and variables, the use of the statistical method of 

cross-validation with V-fold is recommended. This validation 

technique in CART allows the construction of very reliable 

models superior to standard regression models. In this study, 

we have used the standard 10% V-fold cross-validation. The 

data have been randomly divided into 10 equal non-

intersecting subgroups, each containing 10% of the dataset. 

The tree has been built using 9/10 of the data (study sample) 

and the remaining 1/10 (test sample) have been used for 

prediction and to determine the level of the error. The tree 

construction process is repeated 10 times and the average error 

of the 10 series is taken as a general estimate. This procedure 

ensures accurate estimation of the dependent variable and 

allows for the tree to be used for the classification or 

regression of another dataset. 

The estimate 
[ ]
ˆ

s
y  for the value of the prediction in a node 

with the number s is the mean value of all measurements for 

the dependent variable y, which fall within this node: 

 

[ ]
ˆ ,= ∈s k ky y y s                                   (2) 

V.  CART MODEL OF THE OUTPUT POWER POUT  

A CART model has been built in order to determine the 

relationship between laser output power and the 10 basis input 

laser variables. The minimum number of observations has 

been set at 20 for parent nodes and 10 for end nodes. This 

guarantees that terminal nodes will not be too small. 

One more concrete objective of our investigation is to build 

a tree which classifies well experiments with high values of 

output power. For this reason, further on we will especially 

observe the node which contains the highest values of output 

power Pout. 

In order to specify the tree and its reverse prune so as to 

find a tree with an optimal relative error for the data, we apply 

the standard cross-validation procedure described in Section 

IV above.  

The general topological structure of the resulting regression 

tree with 13 nodes is given in Fig. 2.  
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Fig. 2 Regression tree topology with 13 terminal nodes for a model 

with 10 predictors 

 

The tree has been selected with a relative error of 3.8%. The 

obtained model accounts for R2=96.8% of the sample 

following cross-validation with 10%V-fold. The general curve 

of the relative error of the models is shown in Fig. 3. It shows 

that the largest tree with 17 nodes has a minimal relative error 

of 3.7% which is insignificantly better than the chosen 

solution with 13 terminal nodes, providing 3.8% relative error. 

Another criterion for the selection of a tree is the specific 

information in the nodes. Some of this information is shown in 

Fig. 4. Terminal node s=11 contains the highest power values 

with a standard deviation 7.842.  

 

 

 

 

 

Fig. 3 Diagram of the relative errors of CART models for a linear 

model with 10 predictors 

 

The values of the output laser power Pout predicted by the 

regression using formula (2) are the mean values of all cases, 

classified in the corresponding terminal nodes. In the case of 

s=11 it is (see also Fig. 4, terminal node 11) 

 

[11]
ˆ 109.286=Pout W                            (3) 

 

This approximation is within a relative error of 3.8%, which 

is completely satisfactory, since it is comparable to the 

unavoidable experiment error, considered to be within 5%. 

Fig. 5 shows all splitters used to build the tree (compared to 

a part of Fig. 4).  For terminal node 11, which is of interest, 

through the cross-section of local rules, we find the region: 

 

Node11: 4.25kW, 1.75nF,

15.5kHz 19.25kHz

PIN C

PRF

> ≤

< ≤
                (4) 

 

The overall quality of approximation by the regression tree 

is shown in Fig. 6, showing the experiment values of output 

power Pout against those predicted by the model. 
 

 

Fig. 4 Specific characteristics of the nodes with maximum values of output power Pout in a linear model 
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Fig. 5 Distribution of splitters for each node of the tree 

 

 

Fig. 6 Experiment values of laser output power Pout against 

predicted PredPout by using the obtained model with a 5% 

confidence interval 

VI. DISCUSSION  

In the obtained CART model of the 10 independent 

physical parameters, only 6 participate in the constructed 

classification tree. These defining parameters are:  

 

,  ,  ,  2,  ,  PIN DR C PH PRF PNE                    (5) 

 

As it observed in Fig. 5, when the experiments (cases) are 

classified, three main third-level branches form, corresponding 

to a large degree to the three types of physical classification of 

copper lasers - small, medium and large bore lasers [1] 

(considered from left to right of the tree in Fig. 3). Of the 

parameters (5), PIN is the most important quantity. It is the 

root of the tree and subsequently participates in 4 more nodes 

related to the classification of medium and high laser power 

values Pout. For lower power values (along the left end branch 

in Fig. 5), the defining parameters are PIN, DR, PH2 and 

PNE. For medium output power values are - PIN and C. For 

high output power, these are PIN, C and PRF, respectively. 

These results also correspond to the physical processes 

determining the laser generation (output power). For PIN it 

can be explained by the fact, that when the supplied electric 

power PIN is increased, the energy of the electrons rises. This 

leads to a higher probability of the upper laser level being 

populated and laser generation Pout increases. Following the 

obtained classification one can conclude that the supplied 

electric power has decisive role in the overall CuBr laser 

performance.  

The results indicate that the obtained linear CART model 

on the base of the investigated data sample describes quite 

well the various groups of classified cases, predicting values 

for the nodes, and in particular predicting the measured 

maximum output power within a relative error of 5%.   

An important comparison can be made with the models 

obtained using another powerful non-parametric technique - 

MARS. For the same data, second degree MARS models 

concur with 98-99% of the data, but best the predicted values 

obtained in this paper [12]. However, this corresponds to the 

well known common conclusions when compare basic and 

advanced data mining algorithms [15]. 

On the other hand, the advantage of the presented CART 

model is that it provides more accurate criteria for the 

classification of individual experiment groups which are of 

practical use and cannot be obtained by other type of statistical 

techniques.  

VII. CONCLUSION 

A CART model which classifies groups of similar 

experiments with respect to the values of the average output 

laser power has been built for a copper bromide vapor laser. 

The variables which play the main role in increasing laser 

output power have been identified, as well as the intervals 

these should be within when conducting future experiment and 

developing laser sources of the same type.  

REFERENCES  

[1] N. V. Sabotinov, “Metal vapor lasers,” in:  Gas Lasers,  M. Endo  R.and 

F. Walter, Eds., Boca Raton: CRC Press, 2006, pp. 449-494. 
[2] P. G. Foster, Industrial applications of copper bromide laser technology, 

Ph.D. Dissertation, University of Adelaide, School of Chemistry and 

Physics, Dept. of Physics and Mathematical Physics, Australia, 2005.   
[3] M. J. Kushner and B. E. Warner, “Large bore copper vapor lasers: 

Kinetics and scaling issues,” Journal of Applied Physics, vol. 54, pp. 

2970-2982, 1983.     
[4] Encyclopedia of Low-temperature Plasma, Series B, vol. 7: Numerical 

modeling of low-temperature plasmas, M. Ianus, Ed., Moscow, 2004 (in 
Russian). 

[5] A. M. Boichenko, G. S. Evtushenko, and  S. N. Torgaev, “Simulation of 

a CuBr laser,” Laser Physics, Springer, vol. 18, pp. 1522-1525, 2008. 
[6] S. G. Gocheva-Ilieva and I. P. Iliev, “Statistical models of characteristics 

of metal vapor lasers,” New York: Nova Science Publishers, Inc., 2011.  

[7] I. P. Iliev, S. G. Gocheva-Ilieva, D. N. Astadjov, N. P. Denev, and N. V. 
Sabotinov, “Statistical analysis of the CuBr laser efficiency 

improvement,” Optics and Laser Technology, Elsevier, vol. 40, no. 4, 
pp. 641-646, 2008. 

[8] I. P., Iliev S. G. Gocheva-Ilieva, D. N. Astadjov, N. P. Denev, and N. V. 

Sabotinov, “Statistical approach in planning experiments with a copper 

bromide vapor laser,”  Quantum Electronics, vol. 38, no. 5, pp. 436-440, 
2008. 

 

  

PNE

PH2
 

DR

 

  

PIN
 

C

PIN

 

  

PIN

PRF
 

PRF
 

C

PIN

PIN



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:6, 2013

1071

 

 

[9] I. P. Iliev, S.G. Gocheva-Ilieva, and N.V. Sabotinov, “Classification 

analysis of CuBr laser parameters,” Quantum Electron, vol. 39, pp.  143-
146, 2009. 

[10] S. G. Gocheva-Ilieva and I. P. Iliev, “Parametric and nonparametric 

empirical regression models: case study of copper bromide laser 
generation,” Mathematical Problems in Engineering, Hindawi 

Publishing Corporation, vol. 2010, Article ID 697687, 15 pages, 2010. 

[11] S. G. Gocheva-Ilieva and I. P. Iliev, “Nonlinear regression model of 
copper bromide laser generation,” in Proc. COMPSTAT'2010, Y. 

Lechevallier, G. Saporta, Eds., 19th Int. Conf. Comput. Statistics, Paris - 

France, August 22-27, Physica-Verlag, Springer_ebook, pp. 1063-1070, 
2010.  

[12] I. P. Iliev, D. S. Voynikova, and S. G. Gocheva-Ilieva, “Simulation of 

the output power of copper bromide lasers by the MARS method,” 
Quantum Electronics, vol. 42, No 4, pp. 298-303, 2012. 

[13] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and 

Regression Trees, Belmont: Wadsworth International, 1984. 
[14] D. Steinberg, Dan and Phillip Colla, CART: Tree-Structured Non-

Parametric Data Analysis, San Diego: Salford Systems, 1995. 

[15] R. Nisbet, J. Elder, and G. Miner, Handbook of statistical analysis and 
data mining applications, Elsevier Academic Press, Burlington, 2009. 
Ch. 11.  

[16] CART® Classification and Regression Trees, 2012. http://www.salford-
systems.com/en/products/cart,  Accessed 10 Jan 2013.  

[17] N. V. Sabotinov, P. K. Telbizov, and S. D. Kalchev, Bulgarian patent N 

28674, 1975. 
[18] N. V. Sabotinov, N. K. Vuchkov, and D. N. Astadjov, “Gas laser 

discharge tube with copper halide vapors,” United States Patent 
4635271, 1987. 

[19] D. N. Astadjov, N. V. Sabotinov, and N. K. Vuchkov, “Effect of 

hydrogen on CuBr laser power and efficiency,” Opt. Commun. vol. 56 
pp. 279-282, 1985. 

[20] D. N. Astadjov, K. D. Dimitrov, C. E. Little, and N. V. Sabotinov, “A 

CuBr laser with 1.4 W/cm3 average output power,” IEEE J. Quant. 
Electronics,  vol. 30,  pp.1358-1360, 1994. 

[21] V. M. Stoilov, D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov, 

“High spatial intensity 10 W- CuBr laser with hydrogen additives,” Opt. 
and Quant. Electron. vol. 32, pp.  1209-1217, 2000. 

[22] NATO contract SfP, 97 2685, 50W Copper Bromide laser, 2000. 

[23] D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. L. Kirkov, C. E. Little, 
N. Little, et al., “Influence on operating characteristics of scaling sealed-

off CuBr lasers in active length,” Opt. Commun. vol. 135, pp.  289-294, 

1997. 
[24] K. D. Dimitrov, N. V. Sabotinov, “High-power and high-efficiency 

copper bromide vapor laser,” SPIE, vol. 3052, pp.  126-130, 1996. 

[25] D. N. Astadjov, K. D. Dimitrov, D. R. Jones, V. K. Kirkov, C. E. Little, 
N. V. Sabotinov et al., “Copper bromide laser of 120-W average output 

power,” IEEE J. Quant. Electron. vol. 33, pp.  705-709, 1997.  

[26] N. P. Denev, D. N. Astadjov, and N. V. Sabotinov, “Analysis of the 
copper bromide laser efficiency,” in Proc. of Fourth Intern. Symp. on 

Laser Technologies and Lasers’2005, Plovdiv, Bulgaria, pp. 153-156, 

2006. 
[27]  L. Leech, K. C. Barrett, G. A. Morgan, SPSS for Intermediate Statistics: 

Use and Interpretation, 2nd ed., Lawrence Erlbaum Associates 

Publishers, New Jersey, 2005, ch. 2. 
[28] A. J. Izenman, Modern Multivariate Statistical Techniques Regression, 

Classification, and Manifold Learning, New York: Springer, 2008, Ch. 

9.  
[29]  


