The Effect of Soil Surface Slope on Splash Distribution under Water Drop Impact

The effects of down slope steepness on soil splash distribution under a water drop impact have been investigated in this study. The equipment used are the burette to simulate a water drop, a splash cup filled with sandy soil which forms the source area and a splash board to collect the ejected particles. The results found in this study have shown that the apparent mass increased with increasing downslope angle following a linear regression equation with high coefficient of determination. In the same way, the radial soil splash distribution over the distance has been analyzed statistically, and an exponential function was the best fit of the relationship for the different slope angles. The curves and the regressions equations validate the well known FSDF and extend the theory of Van Dijk.

Calculation of Wave Function at the Origin (WFO) for Heavy Mesons by Numerical Solving of the Schrodinger Equation

Many recent high energy physics calculations involving charm and beauty invoke wave function at the origin (WFO) for the meson bound state. Uncertainties of charm and beauty quark masses and different models for potentials governing these bound states require a simple numerical algorithm for evaluation of the WFO's for these bound states. We present a simple algorithm for this propose which provides WFO's with high precision compared with similar ones already obtained in the literature.

Thermodynamic Performance of a Combined Power and Ejector Refrigeration Cycle

In this study thermodynamic performance analysis of a combined organic Rankine cycle and ejector refrigeration cycle is carried out for use of low-grade heat source in the form of sensible energy. Special attention is paid to the effects of system parameters including the turbine inlet temperature and turbine inlet pressure on the characteristics of the system such as ratios of mass flow rate, net work production, and refrigeration capacity as well as the coefficient of performance and exergy efficiency of the system. Results show that for a given source the coefficient of performance increases with increasing of the turbine inlet pressure. However, the exergy efficiency has an optimal condition with respect to the turbine inlet pressure.

Cell Growth and Metabolites Produced by Fluorescent Pseudomonad R62 in Modified Chemically Defined Medium

Chemically defined Schlegel-s medium was modified to improve production of cell growth and other metabolites that are produced by fluorescent pseudomonad R62 strain. The modified medium does not require pH control as pH changes are kept within ± 0.2 units of the initial pH 7.1 during fermentation. The siderophore production was optimized for the fluorescent pseudomonad strain in the modified medium containing 1% glycerol as a major carbon source supplemented with 0.05% succinic acid and 0.5% Ltryptophan. Indole-3 acetic acid (IAA) production was higher when L-tryptophan was used at 0.5%. The 2,4- diacetylphloroglucinol (DAPG) was higher with amended three trace elements in medium. The optimized medium produced 2.28 g/l of dry cell mass and 900 mg/l of siderophore at the end of 36 h cultivation, while the production levels of IAA and DAPG were 65 mg/l and 81 mg/l respectively at the end of 48 h cultivation.

Buckling Optimization of Radially-Graded, Thin-Walled, Long Cylinders under External Pressure

This paper presents a generalized formulation for the problem of buckling optimization of anisotropic, radially graded, thin-walled, long cylinders subject to external hydrostatic pressure. The main structure to be analyzed is built of multi-angle fibrous laminated composite lay-ups having different volume fractions of the constituent materials within the individual plies. This yield to a piecewise grading of the material in the radial direction; that is the physical and mechanical properties of the composite material are allowed to vary radially. The objective function is measured by maximizing the critical buckling pressure while preserving the total structural mass at a constant value equals to that of a baseline reference design. In the selection of the significant optimization variables, the fiber volume fractions adjoin the standard design variables including fiber orientation angles and ply thicknesses. The mathematical formulation employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately as well as the inclusion of the coupling stiffness terms is presented. The proposed model deals with dimensionless quantities in order to be valid for thin shells having arbitrary thickness-to-radius ratios. The critical buckling pressure level curves augmented with the mass equality constraint are given for several types of cylinders showing the functional dependence of the constrained objective function on the selected design variables. It was shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.

Variations of Body Mass Index with Age in Masters Athletes (World Masters Games)

Whilst there is growing evidence that activity across the lifespan is beneficial for improved health, there are also many changes involved with the aging process and subsequently the potential for reduced indices of health. The nexus between health, physical activity and aging is complex and has raised much interest in recent times due to the realization that a multifaceted approached is necessary in order to counteract a growing obesity epidemic. By investigating age based trends within a population adhering to competitive sport at older ages, further insight might be gleaned to assist in understanding one of many factors influencing this relationship. BMI was derived using data gathered on a total of 6,071 masters athletes (51.9% male, 48.1% female) aged 25 to 91 years ( =51.5, s =±9.7), competing at the Sydney World Masters Games (2009). Using linear and loess regression it was demonstrated that the usual tendency for prevalence of higher BMI increasing with age was reversed in the sample. This trend in reversal was repeated for both male and female only sub-sets of the sample participants, indicating the possibility of improved prevalence of BMI with increasing age for both the sample as a whole and these individual subgroups. This evidence of improved classification in one index of health (reduced BMI) for masters athletes (when compared to the general population) implies there are either improved levels of this index of health with aging due to adherence to sport or possibly the reduced BMI is advantageous and contributes to this cohort adhering (or being attracted) to masters sport at older ages. Demonstration of this proportionately under-investigated World Masters Games population having an improved relationship between BMI and increasing age over the general population is of particular interest in the context of the measures being taken globally to curb an obesity epidemic.

Study on the Derivatization Process Using N-O-bis-(trimethylsilyl)-trifluoroacetamide, N-(tert-butyldimethylsilyl)-N-methyltrifluoroace tamide, Trimethylsilydiazomethane for the Determination of Fecal Sterols by Gas Chromatography-Mass Spectrometry

Fecal sterol has been proposed as a chemical indicator of human fecal pollution even when fecal coliform populations have diminished due to water chlorination or toxic effects of industrial effluents. This paper describes an improved derivatization procedure for simultaneous determination of four fecal sterols including coprostanol, epicholestanol, cholesterol and cholestanol using gas chromatography-mass spectrometry (GC-MS), via optimization study on silylation procedures using N-O-bis (trimethylsilyl)-trifluoroacetamide (BSTFA), and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA), which lead to the formation of trimethylsilyl (TMS) and tert-butyldimethylsilyl (TBS) derivatives, respectively. Two derivatization processes of injection-port derivatization and water bath derivatization (60 oC, 1h) were inspected and compared. Furthermore, the methylation procedure at 25 oC for 2h with trimethylsilydiazomethane (TMSD) for fecal sterols analysis was also studied. It was found that most of TMS derivatives demonstrated the highest sensitivities, followed by methylated derivatives. For BSTFA or MTBSTFA derivatization processes, the simple injection-port derivatization process could achieve the same efficiency as that in the tedious water bath derivatization procedure.

Analysis of Hollow Rollers Implementation in Flexible Manufacturing of Large Bearings

In this paper is study the possibility of successfully implementing of hollow roller concept in order to minimize inertial mass of the large bearings, with major results in diminution of the material consumption, increasing of power efficiency (in wind power station area), increasing of the durability and life duration of the large bearings systems, noise reduction in working, resistance to vibrations, an important diminution of losses by abrasion and reduction of the working temperature. In this purpose was developed an original solution through which are reduced mass, inertial forces and moments of large bearings by using of hollow rollers. The research was made by using the method of finite element analysis applied on software type Solidworks - Nastran. Also, is study the possibility of rapidly changing the manufacturing system of solid and hollow cylindrical rollers.

HIV Modelling - Parallel Implementation Strategies

We report on the development of a model to understand why the range of experience with respect to HIV infection is so diverse, especially with respect to the latency period. To investigate this, an agent-based approach is used to extract highlevel behaviour which cannot be described analytically from the set of interaction rules at the cellular level. A network of independent matrices mimics the chain of lymph nodes. Dealing with massively multi-agent systems requires major computational effort. However, parallelisation methods are a natural consequence and advantage of the multi-agent approach and, using the MPI library, are here implemented, tested and optimized. Our current focus is on the various implementations of the data transfer across the network. Three communications strategies are proposed and tested, showing that the most efficient approach is communication based on the natural lymph-network connectivity.

A Study of the Cyclic Variations of the Enzyme and the Electrolyte Activity in Uterine and Oviducal Secretions during an Estrous Cycle of the Ewe

Uterine and oviducal fluids are necessary for capacitation of the spermatozoa and early embryonic development. The aim of the present study was to determine the effects of estrous cycle phases (follicular and luteal) on some biological parameters (enzymes, electrolytes and total proteins) in uterine and oviducal secretions of ewes. Oviducal and uterine fluids were collected, diluted and centrifuged. According to our results, concentrations of GPT, G6PDH, total proteins, K and Na were significantly (P

Revival of the Modern Wing Sails for the Propulsion of Commercial Ships

Over 90% of the world trade is carried by the international shipping industry. As most of the countries are developing, seaborne trade continues to expand to bring benefits for consumers across the world. Studies show that world trade will increase 70-80% through shipping in the next 15-20 years. Present global fleet of 70000 commercial ships consumes approximately 200 million tonnes of diesel fuel a year and it is expected that it will be around 350 million tonnes a year by 2020. It will increase the demand for fuel and also increase the concentration of CO2 in the atmosphere. So, it-s essential to control this massive fuel consumption and CO2 emission. The idea is to utilize a diesel-wind hybrid system for ship propulsion. Use of wind energy by installing modern wing-sails in ships can drastically reduce the consumption of diesel fuel. A huge amount of wind energy is available in oceans. Whenever wind is available the wing-sails would be deployed and the diesel engine would be throttled down and still the same forward speed would be maintained. Wind direction in a particular shipping route is not same throughout; it changes depending upon the global wind pattern which depends on the latitude. So, the wing-sail orientation should be such that it optimizes the use of wind energy. We have made a computer programme in which by feeding the data regarding wind velocity, wind direction, ship-motion direction; we can find out the best wing-sail position and fuel saving for commercial ships. We have calculated net fuel saving in certain international shipping routes, for instance, from Mumbai in India to Durban in South Africa. Our estimates show that about 8.3% diesel fuel can be saved by utilizing the wind. We are also developing an experimental model of the ship employing airfoils (small scale wingsail) and going to test it in National Wind Tunnel Facility in IIT Kanpur in order to develop a control mechanism for a system of airfoils.

Micropolar Fluids Effects on the Dynamic Characteristics of Four-lobe Journal Bearing

Dynamic characteristics of a four-lobe journal bearing of micropolar fluids are presented. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and solving it by using finite difference technique. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.

Multiagent Systems Simulation

In this paper, we consider components of discrete event imitating model, implementing a simulation model by using JAVA and performing an input analysis of the data and an output analysis of the simulation results. Was lead development of imitating model of mass service system with n (n≥1) devices of service. On the basis of the developed process of a multithreading simulated the distributed processes with presence of synchronization. Was developed the algorithm of event-oriented simulation, was received results of system functioning with n devices of service.

A Study on the Effects of Thermodynamic Nonideality and Mass Transfer on Multi-phase Hydrodynamics Using CFD Methods

Considering non-ideal behavior of fluids and its effects on hydrodynamic and mass transfer in multiphase flow is very essential. Simulations were performed that takes into account the effects of mass transfer and mixture non-ideality on hydrodynamics reported by Irani et al. In this paper, by assuming the density of phases to be constant and Raullt-s law instead of using EOS and fugacity coefficient definition, respectively for both the liquid and gas phases, the importance of non-ideality effects on mass transfer and hydrodynamic behavior was studied. The results for a system of octane/propane (T=323 K, P =445 kpa) also indicated that the assumption of constant density in simulation had major role to diverse from experimental data. Furthermore, comparison between obtained results and the previous report indicated significant differences between experimental data and simulation results with more ideal assumptions.

Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet

The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.

Case Studies of CSAMT Method Applied to Study of Complex Rock Mass Structure and Hidden Tectonic

In projects like waterpower, transportation and mining, etc., proving up the rock-mass structure and hidden tectonic to estimate the geological body-s activity is very important. Integrating the seismic results, drilling and trenching data, CSAMT method was carried out at a planning dame site in southwest China to evaluate the stability of a deformation. 2D and imitated 3D inversion resistivity results of CSAMT method were analyzed. The results indicated that CSAMT was an effective method for defining an outline of deformation body to several hundred meters deep; the Lung Pan Deformation was stable in natural conditions; but uncertain after the future reservoir was impounded. This research presents a good case study of the fine surveying and research on complex geological structure and hidden tectonic in engineering project.

An Optimization Analysis on an Automotive Component with Fatigue Constraint Using HyperWorks Software for Environmental Sustainability

A finite element analysis (FEA) computer software HyperWorks is utilized in re-designing an automotive component to reduce its mass. Reduction of components mass contributes towards environmental sustainability by saving world-s valuable metal resources and by reducing carbon emission through improved overall vehicle fuel efficiency. A shape optimization analysis was performed on a rear spindle component. Pre-processing and solving procedures were performed using HyperMesh and RADIOSS respectively. Shape variables were defined using HyperMorph. Then optimization solver OptiStruct was utilized with fatigue life set as a design constraint. Since Stress-Number of Cycle (S-N) theory deals with uni-axial stress, the Signed von Misses stress on the component was used for looking up damage on S-N curve, and Gerber criterion for mean stress corrections. The optimization analysis resulted in mass reduction of 24% of the original mass. The study proved that the adopted approach has high potential use for environmental sustainability.

Towards Synthesis of Atropodiastereomeric Indolostilbenes Hybrids: A New Class of Oligostilbenoids

The conceptually construction of axially chiral indolostilbenesi.eN-(2-{(E)-2-[2'-(1-Acetyl-1H-indol-2-yl)-3'chloro-4,4',6,6'-tetramethoxy[1,1'-biphenyl]-2yl]ethenyl}phenyl)acetamide and N-(2-{(E)-2-[2'-(1-Acetyl-1H-indol-2-yl)-3'-chloro-2,4',6,6'-tetramethoxy[1,1'-biphenyl]-4-yl]ethenyl}phenyl) acetamide are described in this paper. These structure, were obtained by the tactical combination of palladium-catalyzed coupling which produced 10-acetamido-3,5-dimethoxystilbene, follow by FeCl3-induced oxidative cyclization/dimerisation. All structures were unambiguously confirmed by 1D (1H, 13C) and 2D NMR experiment, (COSY, HMQC, HMBC) and mass spectrometry.