Contact Angle Measurement of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate

Contact angle measurement was utilized in order to study the subject of the wettability and surface chemistry of the nanocomposites materials. Water and glycerol droplets were used in this study. The incorporation of layered silicate into the vinyl ester matrix helped to improve the wettability and reduced the θ values of both liquids used. The addition of 2 wt.% clay loading reduced the θ values of water and glycerol by up to 21% and 6% respectively. Likewise, the incorporation of 4 wt.% clay loading reduced the water and glycerol θ values by 49% and 38% respectively. Also this study confirms the findings in the literature regarding the relationship between the intercalation nanocomposites level and the wettability. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.

The Effect of Processing Parameters of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate on the Level of Exfoliation

The study of the effect of the processing parameters on the level of intercalation between the layered silicate and polymer of two different methodology took place. X-ray diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectrometry, and Transmission Electron Microscopy were utilized in order to examine the intercalation level of nanocomposites of both methodologies. It was found that drying the clay prior to mixing with the polymer, mixing time and speed, degassing time, and the curing method had major changes to the level of distribution of the nanocomposites structure. In methodology 1, the presence of aggregation layers was observed at only 2.5 wt.% clay loading whereas in methodology 2 the presence of aggregation layers was found at higher clay loading (i.e. 5 wt.%).

Mechanical and Thermal Properties Characterisation of Vinyl Ester Matrix Nanocomposites Based On Layered Silicate: Effect of Processing Parameters

The mechanical properties including flexural and tensile of neat vinyl ester and polymer based on layered silicate nanocomposite materials of two different methodologies are discussed. Methodology 1 revealed that the addition of layered silicate into the polymer matrix increased the mechanical and thermal properties up to 1 wt.% clay loading. The incorporation of more clay resulted in decreasing the properties which was traced to the existence of aggregation layers. The aggregation layers imparted a negative impact on the overall mechanical and thermal properties. On the other hand, methodology 2 increased the mechanical and thermal properties up to 4 wt.% clay loading. The different amounts of improvements were assigned to the various preparation parameters. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilized in order to characterize the interlamellar structure of nanocomposites.

Future Logistics - Challenges, Requirements and Solutions for Logistics Networks

The importance of logistics has changed enormously in the last few decades. While logistics was formerly one of the core functions of most companies, logistics or at least parts of their functions are nowadays outsourced to external logistic service providers in terms of contracts. As a result of this shift new business models like the fourth party logistics provider emerged, which designs, plans and monitors the resulting logistics networks. This new business model and topics such as Synchromodality or Big Data impose new requirements on the underlying IT, which cannot be met with conventional concepts and approaches. In this paper, the challenges of logistics network monitoring are outlined by using a scenario. The most common layers in a logical multilayered architecture for an information system are used to point out the arising challenges for IT. In addition, first appropriate solution approaches are introduced.  

On One Mathematical Model for Filtration of Weakly Compressible Chemical Compound in the Porous Heterogeneous 3D Medium. Part I: Model Construction with the Aid of the Ollendorff Approach

A filtering problem of almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain is studied. In this work general approaches to the solution of twodimensional filtering problems in ananisotropic, inhomogeneous and multilayered medium are developed, and on the basis of the obtained results mathematical models are constructed (according to Ollendorff method) for studying the certain engineering and technical problem of filtering the almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain. For some of the formulated mathematical problems with additional requirements for the structure of the porous inhomogeneous medium, namely, its isotropy, spatial periodicity of its permeability coefficient, solution algorithms are proposed. Continuation of the current work titled ”On one mathematical model for filtration of weakly compressible chemical compound in the porous heterogeneous 3D medium. Part II: Determination of the reference directions of anisotropy and permeabilities on these directions” will be prepared in the shortest terms by the authors.

Fault Detection via Stability Analysis for the Hybrid Control Unit of HEVs

Fault detection determines faultexistence and detecting time. This paper discusses two layered fault detection methods to enhance the reliability and safety. Two layered fault detection methods consist of fault detection methods of component level controllers and system level controllers. Component level controllers detect faults by using limit checking, model-based detection, and data-driven detection and system level controllers execute detection by stability analysis which can detect unknown changes. System level controllers compare detection results via stability with fault signals from lower level controllers. This paper addresses fault detection methods via stability and suggests fault detection criteria in nonlinear systems. The fault detection method applies tothe hybrid control unit of a military hybrid electric vehicleso that the hybrid control unit can detect faults of the traction motor.

Mechanism of Damping in Welded Structures using Finite Element Approach

The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such, some problems particularly slip damping analysis has not received enough attention. To validate the finite element model developed, experiments have been conducted on a number of mild steel specimens under different initial conditions of vibration. Finite element model developed affirms that the damping capacity of such structures is influenced by a number of vital parameters such as; pressure distribution, kinematic coefficient of friction and micro-slip at the interfaces, amplitude, frequency of vibration, length and thickness of the specimen. Finite element model developed can be utilized effectively in the design of machine tools, automobiles, aerodynamic and space structures, frames and machine members for enhancing their damping capacity.

Springback Simulations of Monolithic and Layered Steels Used for Pressure Equipment

Carbon steel is used in boilers, pressure vessels, heat exchangers, piping, structural elements and other moderatetemperature service systems in which good strength and ductility are desired. ASME Boiler and Pressure Vessel Code, Section II Part A (2004) provides specifications of ferrous materials for construction of pressure equipment, covering wide range of mechanical properties including high strength materials for power plants application. However, increased level of springback is one of the major problems in fabricating components of high strength steel using bending. Presented work discuss the springback simulations for five different steels (i.e. SA-36, SA-299, SA-515 grade 70, SA-612 and SA-724 grade B) using finite element analysis of air V-bending. Analytical springback simulations of hypothetical layered materials are presented. Result shows that; (i) combination of the material property parameters controls the springback, (ii) layer of the high ductility steel on the high strength steel greatly suppresses the springback.

Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis

This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

Analysis of Data Gathering Schemes for Layered Sensor Networks with Multihop Polling

In this paper, we investigate multihop polling and data gathering schemes in layered sensor networks in order to extend the life time of the networks. A network consists of three layers. The lowest layer contains sensors. The middle layer contains so called super nodes with higher computational power, energy supply and longer transmission range than sensor nodes. The top layer contains a sink node. A node in each layer controls a number of nodes in lower layer by polling mechanism to gather data. We will present four types of data gathering schemes: intermediate nodes do not queue data packet, queue single packet, queue multiple packets and aggregate data, to see which data gathering scheme is more energy efficient for multihop polling in layered sensor networks.

Biomechanical Properties of Hen's Eggshell: Experimental Study and Numerical Modeling

In this article, biomechanical aspects of hen-s eggshell as a natural ceramic structure are studied. The images, taken by a scanning electron microscope (SEM), are used to investigate the microscopic aspects of the egg. It is observed that eggshell has a three-layered microstructure with different morphological and structural characteristics. Studies on the eggshell membrane (ESM) as a prosperous tissue suggest that it is placed to prevent the penetration of microorganisms into the egg. Finally, numerical models of the egg are presented to study the stress distribution and its deformation under different loading conditions. The effects of two different types of loading (hydrostatic and point loadings) on two different shell models (with constant and variable thicknesses) are investigated in detail.

LAYMOD; A Layered and Modular Platform for CAx Collaboration Management and Supporting Product data Integration based on STEP Standard

Nowadays companies strive to survive in a competitive global environment. To speed up product development/modifications, it is suggested to adopt a collaborative product development approach. However, despite the advantages of new IT improvements still many CAx systems work separately and locally. Collaborative design and manufacture requires a product information model that supports related CAx product data models. To solve this problem many solutions are proposed, which the most successful one is adopting the STEP standard as a product data model to develop a collaborative CAx platform. However, the improvement of the STEP-s Application Protocols (APs) over the time, huge number of STEP AP-s and cc-s, the high costs of implementation, costly process for conversion of older CAx software files to the STEP neutral file format; and lack of STEP knowledge, that usually slows down the implementation of the STEP standard in collaborative data exchange, management and integration should be considered. In this paper the requirements for a successful collaborative CAx system is discussed. The STEP standard capability for product data integration and its shortcomings as well as the dominant platforms for supporting CAx collaboration management and product data integration are reviewed. Finally a platform named LAYMOD to fulfil the requirements of CAx collaborative environment and integrating the product data is proposed. The platform is a layered platform to enable global collaboration among different CAx software packages/developers. It also adopts the STEP modular architecture and the XML data structures to enable collaboration between CAx software packages as well as overcoming the STEP standard limitations. The architecture and procedures of LAYMOD platform to manage collaboration and avoid contradicts in product data integration are introduced.

Big Bang – Big Crunch Optimization Method in Optimum Design of Complex Composite Laminates

An accurate optimal design of laminated composite structures may present considerable difficulties due to the complexity and multi-modality of the functional design space. The Big Bang – Big Crunch (BB-BC) optimization method is a relatively new technique and has already proved to be a valuable tool for structural optimization. In the present study the exceptional efficiency of the method is demonstrated by an example of the lay-up optimization of multilayered anisotropic cylinders based on a three-dimensional elasticity solution. It is shown that, due to its simplicity and speed, the BB-BC is much more efficient for this class of problems when compared to the genetic algorithms.

Cooperative Multi Agent Soccer Robot Team

This paper introduces our first efforts of developing a new team for RoboCup Middle Size Competition. In our robots we have applied omni directional based mobile system with omnidirectional vision system and fuzzy control algorithm to navigate robots. The control architecture of MRL middle-size robots is a three layered architecture, Planning, Sequencing, and Executing. It also uses Blackboard system to achieve coordination among agents. Moreover, the architecture should have minimum dependency on low level structure and have a uniform protocol to interact with real robot.

Dynamic Response of Wind Turbines to Theoretical 3D Seismic Motions Taking into Account the Rotational Component

We study the dynamic response of a wind turbine structure subjected to theoretical seismic motions, taking into account the rotational component of ground shaking. Models are generated for a shallow moderate crustal earthquake in the Madrid Region (Spain). Synthetic translational and rotational time histories are computed using the Discrete Wavenumber Method, assuming a point source and a horizontal layered earth structure. These are used to analyze the dynamic response of a wind turbine, represented by a simple finite element model. Von Mises stress values at different heights of the tower are used to study the dynamical structural response to a set of synthetic ground motion time histories

Effective Relay Communication for Scalable Video Transmission

In this paper, we propose an effective relay communication for layered video transmission as an alternative to make the most of limited resources in a wireless communication network where loss often occurs. Relaying brings stable multimedia services to end clients, compared to multiple description coding (MDC). Also, retransmission of only parity data about one or more video layer using channel coder to the end client of the relay device is paramount to the robustness of the loss situation. Using these methods in resource-constrained environments, such as real-time user created content (UCC) with layered video transmission, can provide high-quality services even in a poor communication environment. Minimal services are also possible. The mathematical analysis shows that the proposed method reduced the probability of GOP loss rate compared to MDC and raptor code without relay. The GOP loss rate is about zero, while MDC and raptor code without relay have a GOP loss rate of 36% and 70% in case of 10% frame loss rate.

Highly Efficient White Light-emitting Diodes Based on Layered Quantum Dot-Phosphor Nanocomposites as Converting Materials

This paper reports on the enhanced photoluminescence (PL) of nanocomposites through the layered structuring of phosphor and quantum dot (QD). Green phosphor of Sr2SiO4:Eu, red QDs of CdSe/CdS/CdZnS/ZnS core-multishell, and thermo-curable resin were used for this study. Two kinds of composite (layered and mixed) were prepared, and the schemes for optical energy transfer between QD and phosphor were suggested and investigated based on PL decay characteristics. It was found that the layered structure is more effective than the mixed one in the respects of PL intensity, PL decay and thermal loss. When this layered nanocomposite (QDs on phosphor) is used to make white light emitting diode (LED), the brightness is increased by 37 %, and the color rendering index (CRI) value is raised to 88.4 compared to the mixed case of 80.4.

Application of Extreme Learning Machine Method for Time Series Analysis

In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.

Artificial Neural Network Models of the Ruminal pH in Holstein Steers

In this study four Holstein steers with rumen fistula fed 7 kg of dry matter (DM) of diets differing in concentrate to alfalfa hay ratios as 60:40, 70:30, 80:20, and 90:10 in a 4 × 4 latin square design. The pH of the ruminal fluid was measured before the morning feeding (0.0 h) to 8 h post feeding. In this study, a two-layered feed-forward neural network trained by the Levenberg-Marquardt algorithm was used for modelling of ruminal pH. The input variables of the network were time, concentrate to alfalfa hay ratios (C/F), non fiber carbohydrate (NFC) and neutral detergent fiber (NDF). The output variable was the ruminal pH. The modeling results showed that there was excellent agreement between the experimental data and predicted values, with a high determination coefficient (R2 >0.96). Therefore, we suggest using these model-derived biological values to summarize continuously recorded pH data.

Authentic Learning for Computer Network with Mobile Device-Based Hands-On Labware

Computer network courses are essential parts of college computer science curriculum and hands-on networking experience is well recognized as an effective approach to help students understand better about the network concepts, the layered architecture of network protocols, and the dynamics of the networks. However, existing networking labs are usually server-based and relatively cumbersome, which require a certain level of specialty and resource to set up and maintain the lab environment. Many universities/colleges lack the resources and build-ups in this field and have difficulty to provide students with hands-on practice labs. A new affordable and easily-adoptable approach to networking labs is desirable to enhance network teaching and learning. In addition, current network labs are short on providing hands-on practice for modern wireless and mobile network learning. With the prevalence of smart mobile devices, wireless and mobile network are permeating into various aspects of our information society. The emerging and modern mobile technology provides computer science students with more authentic learning experience opportunities especially in network learning. A mobile device based hands-on labware can provide an excellent ‘real world’ authentic learning environment for computer network especially for wireless network study. In this paper, we present our mobile device-based hands-on labware (series of lab module) for computer network learning which is guided by authentic learning principles to immerse students in a real world relevant learning environment. We have been using this labware in teaching computer network, mobile security, and wireless network classes. The student feedback shows that students can learn more when they have hands-on authentic learning experience.