Elastic-Plastic Contact Analysis of Single Layer Solid Rough Surface Model using FEM

Evaluation of contact pressure, surface and subsurface contact stresses are essential to know the functional response of surface coatings and the contact behavior mainly depends on surface roughness, material property, thickness of layer and the manner of loading. Contact parameter evaluation of real rough surface contacts mostly relies on statistical single asperity contact approaches. In this work, a three dimensional layered solid rough surface in contact with a rigid flat is modeled and analyzed using finite element method. The rough surface of layered solid is generated by FFT approach. The generated rough surface is exported to a finite element method based ANSYS package through which the bottom up solid modeling is employed to create a deformable solid model with a layered solid rough surface on top. The discretization and contact analysis are carried by using the same ANSYS package. The elastic, elastoplastic and plastic deformations are continuous in the present finite element method unlike many other contact models. The Young-s modulus to yield strength ratio of layer is varied in the present work to observe the contact parameters effect while keeping the surface roughness and substrate material properties as constant. The contacting asperities attain elastic, elastoplastic and plastic states with their continuity and asperity interaction phenomena is inherently included. The resultant contact parameters show that neighboring asperity interaction and the Young-s modulus to yield strength ratio of layer influence the bulk deformation consequently affect the interface strength.

Contact Problem for an Elastic Layered Composite Resting on Rigid Flat Supports

In this study, the contact problem of a layered composite which consists of two materials with different elastic constants and heights resting on two rigid flat supports with sharp edges is considered. The effect of gravity is neglected. While friction between the layers is taken into account, it is assumed that there is no friction between the supports and the layered composite so that only compressive tractions can be transmitted across the interface. The layered composite is subjected to a uniform clamping pressure over a finite portion of its top surface. The problem is reduced to a singular integral equation in which the contact pressure is the unknown function. The singular integral equation is evaluated numerically and the results for various dimensionless quantities are presented in graphical forms.

Improvement of Synchronous Machine Dynamic Characteristics via Neural Network Based Controllers

This paper presents Simulation and experimental study aimed at investigating the effectiveness of an adaptive artificial neural network stabilizer on enhancing the damping torque of a synchronous generator. For this purpose, a power system comprising a synchronous generator feeding a large power system through a short tie line is considered. The proposed adaptive neuro-control system consists of two multi-layered feed forward neural networks, which work as a plant model identifier and a controller. It generates supplementary control signals to be utilized by conventional controllers. The details of the interfacing circuits, sensors and transducers, which have been designed and built for use in tests, are presented. The synchronous generator is tested to investigate the effect of tuning a Power System Stabilizer (PSS) on its dynamic stability. The obtained simulation and experimental results verify the basic theoretical concepts.

Evaluation on Bearing Capacity of Ring Foundations on two-Layered Soil

This paper utilizes a finite element analysis to study the bearing capacity of ring footings on a two-layered soil. The upper layer, that the footing is placed on it, is soft clay and the underneath layer is a cohesionless sand. For modeling soils, Mohr–Coulomb plastic yield criterion is employed. The effects of two factors, the clay layer thickness and the ratio of internal radius of the ring footing to external radius of the ring, have been analyzed. It is found that the bearing capacity decreases as the value of ri / ro increases. Although, as the clay layer thickness increases the bearing capacity was alleviated gradually.

The Implementation of Spatio-Temporal Graph to Represent Situations in the Virtual World

In this paper, we develop a Spatio-Temporal graph as of a key component of our knowledge representation Scheme. We design an integrated representation Scheme to depict not only present and past but future in parallel with the spaces in an effective and intuitive manner. The resulting multi-dimensional comprehensive knowledge structure accommodates multi-layered virtual world developing in the time to maximize the diversity of situations in the historical context. This knowledge representation Scheme is to be used as the basis for simulation of situations composing the virtual world and for implementation of virtual agents' knowledge used to judge and evaluate the situations in the virtual world. To provide natural contexts for situated learning or simulation games, the virtual stage set by this Spatio-Temporal graph is to be populated by agents and other objects interrelated and changing which are abstracted in the ontology.

Task Modeling for User Interface Design: A Layered Approach

The model-based approach to user interface design relies on developing separate models that are capturing various aspects about users, tasks, application domain, presentation and dialog representations. This paper presents a task modeling approach for user interface design and aims at exploring the mappings between task, domain and presentation models. The basic idea of our approach is to identify typical configurations in task and domain models and to investigate how they relate each other. A special emphasis is put on application-specific functions and mappings between domain objects and operational task structures. In this respect, we will distinguish between three layers in the task decomposition: a functional layer, a planning layer, and an operational layer.

Linear-Operator Formalism in the Analysis of Omega Planar Layered Waveguides

A complete spectral representation for the electromagnetic field of planar multilayered waveguides inhomogeneously filled with omega media is presented. The problem of guided electromagnetic propagation is reduced to an eigenvalue equation related to a 2 ´ 2 matrix differential operator. Using the concept of adjoint waveguide, general bi-orthogonality relations for the hybrid modes (either from the discrete or from the continuous spectrum) are derived. For the special case of homogeneous layers the linear operator formalism is reduced to a simple 2 ´ 2 coupling matrix eigenvalue problem. Finally, as an example of application, the surface and the radiation modes of a grounded omega slab waveguide are analyzed.

Simultaneous HPAM/SDS Injection in Heterogeneous/Layered Models

Although lots of experiments have been done in enhanced oil recovery, the number of experiments which consider the effects of local and global heterogeneity on efficiency of enhanced oil recovery based on the polymer-surfactant flooding is low and rarely done. In this research, we have done numerous experiments of water flooding and polymer-surfactant flooding on a five spot glass micromodel in different conditions such as different positions of layers. In these experiments, five different micromodels with three different pore structures are designed. Three models with different layer orientation, one homogenous model and one heterogeneous model are designed. In order to import the effect of heterogeneity of porous media, three types of pore structures are distributed accidentally and with equal ratio throughout heterogeneous micromodel network according to random normal distribution. The results show that maximum EOR recovery factor will happen in a situation where the layers are orthogonal to the path of mainstream and the minimum EOR recovery factor will happen in a situation where the model is heterogeneous. This experiments show that in polymer-surfactant flooding, with increase of angles of layers the EOR recovery factor will increase and this recovery factor is strongly affected by local heterogeneity around the injection zone.

Performance Analysis of MIMO Based Multi-User Cooperation Diversity Over Various Fading Channels

In this paper, hybrid FDMA-TDMA access technique in a cooperative distributive fashion introducing and implementing a modified protocol introduced in [1] is analyzed termed as Power and Cooperation Diversity Gain Protocol (PCDGP). A wireless network consists of two users terminal , two relays and a destination terminal equipped with two antennas. The relays are operating in amplify-and-forward (AF) mode with a fixed gain. Two operating modes: cooperation-gain mode and powergain mode are exploited from source terminals to relays, as it is working in a best channel selection scheme. Vertical BLAST (Bell Laboratories Layered Space Time) or V-BLAST with minimum mean square error (MMSE) nulling is used at the relays to perfectly detect the joint signals from multiple source terminals. The performance is analyzed using binary phase shift keying (BPSK) modulation scheme and investigated over independent and identical (i.i.d) Rayleigh, Ricean-K and Nakagami-m fading environments. Subsequently, simulation results show that the proposed scheme can provide better signal quality of uplink users in a cooperative communication system using hybrid FDMATDMA technique.