Estimation of Bio-Kinetic Coefficients for Treatment of Brewery Wastewater

Anaerobic modeling is a useful tool to describe and simulate the condition and behaviour of anaerobic treatment units for better effluent quality and biogas generation. The present investigation deals with the anaerobic treatment of brewery wastewater with varying organic loads. The chemical oxygen demand (COD) and total suspended solids (TSS) of the influent and effluent of the bioreactor were determined at various retention times to generate data for kinetic coefficients. The bio-kinetic coefficients in the modified Stover–Kincannon kinetic and methane generation models were determined to study the performance of anaerobic digestion process. At steady-state, the determination of the kinetic coefficient (K), the endogenous decay coefficient (Kd), the maximum growth rate of microorganisms (μmax), the growth yield coefficient (Y), ultimate methane yield (Bo), maximum utilization rate constant Umax and the saturation constant (KB) in the model were calculated to be 0.046 g/g COD, 0.083 (d¯¹), 0.117 (d-¹), 0.357 g/g, 0.516 (L CH4/gCODadded), 18.51 (g/L/day) and 13.64 (g/L/day) respectively. The outcome of this study will help in simulation of anaerobic model to predict usable methane and good effluent quality during the treatment of industrial wastewater. Thus, this will protect the environment, conserve natural resources, saves time and reduce cost incur by the industries for the discharge of untreated or partially treated wastewater. It will also contribute to a sustainable long-term clean development mechanism for the optimization of the methane produced from anaerobic degradation of waste in a close system.

Total Lipid of Mutant Synechococcus sp. PCC 7002

Microalgae lipid is a promising feedstock for biodiesel production. The objective of this work was to study growth factors affecting marine mutant Synechococcus sp. (PCC 7002) for high lipid production. Four growth factors were investigated; nitrogen-phosporus-potassium (NPK) concentration, light intensity, temperature and NaNO3 concentration on mutant strain growth and lipid production were studied. Design Expert v8.0 was used to design the experimental and analyze the data. The experimental design selected was Min-Run Res IV which consists of 12 runs and the response surfaces measured were specific growth rate and lipid concentration. The extraction of lipid was conducted by chloroform/methanol solvents system. Based on the study, mutant Synechococcus sp. PCC 7002 gave the highest specific growth rate of 0.0014 h-1 at 0% NPK, 2500 lux, 40oC and 0% NaNO3. On the other hand, the highest lipid concentration was obtained at 0% NPK, 3500 lux, 30oC and 1% NaNO3.

SMEs Access to Finance in Croatia – Model Approach

The goals of the research include the determination of the characteristics of SMEs finance in Croatia, as well as the determination of indirect growth rates of the information model of the entrepreneurs` perception of business environment. The research results show that cost of finance and access to finance are most important constraining factor in setting up and running the business of small entrepreneurs in Croatia. Furthermore, small entrepreneurs in Croatia are significantly dissatisfied with the administrative barriers although relatively to a lesser extent than was the case in the pre crisis time. High collateral requirement represents the main characteristic of bank lending concerning SMEs followed by long credit elaboration process. Formulated information model has defined the individual impact of indirect growth rates of the remaining variables on the model’s specific variable.

Urban Sprawl and the Loss of Peri-Urban Land in Kumasi, Ghana

Kumasi is Ghana’s second largest and fastest growing city with an annual population growth rate of 5.4 percent. A major result of this phenomenon is a growing sprawl at the fringes of the city. This paper assesses the nature, extent and impact of sprawl on Kumasi and examines urban planning efforts at addressing this phenomenon. Both secondary and empirical data were collected from decentralized government departments of the Kumasi Metropolitan Assembly and residents of some sprawling communities. The study reveals that sprawl in the metropolis is rapidly consuming fringe rural communities. This situation has weakened effective management of the metropolis causing problems such as congestion and conversion of peri-urban land into residential use without ancillary infrastructure and social services. The paper recommends effective and timely planning and provision of services as well as an overall economic development and spatial integration through regional planning as a way of achieving a long term solution to sprawl.

Effect of Single Overload Ratio and Stress Ratio on Fatigue Crack Growth

In this investigation variation of cyclic loading effect on fatigue crack growth is the studied. This study is performed on 2024 T351 and 7050-T74 aluminum alloys, used in aeronautical structures. The propagation model used in this study is NASGRO model. In constant amplitude loading (CA), effect of stress ratio has been investigated. Fatigue life and fatigue crack growth rate were affected by this factor. Results showed an increasing in fatigue crack growth rates (FCGRs) with increasing stress ratio. Variable amplitude loading (VAL) can take many forms i.e. with a single overload, overload band… etc. The shape of these loads affects strongly the fracture life and FCGRs. The application of a single overload (ORL) decrease the FCGR and increase the delay crack length caused by the formation of a larger plastic zone compared to the plastic zone due without VAL. The fatigue behavior of the both material under single overload has been compared.

The Role of Nozzle-Exit Conditions on the Flow Field of a Plane Jet

This article reviews the role of nozzle-exit conditions on the flow field of a plane jet. The jet issuing from a sharp-edged orifice plate at a Reynolds number (Re=18000) with nozzle aspect ratio (AR=72) exhibits the greatest shear-layer instabilities, highest entrainment and jet-spreading rates compared to the radially contoured nozzle. The growth rate of the shear-layer is the highest for the orifice-jet although this property could be amplified for larger Re or AR. A local peak in turbulent energy is found at x»10h. The peak appears to be elevated for an orifice-jet with lower Re or AR. The far-field energy sustained by the orifice-jet exceeds the contoured case although a higher Re and AR may enhance this value. The spectra demonstrated the largest eddy structures for the contoured nozzle. However, the frequency of coherent eddies is higher for the orifice-jet, with a larger magnitude achievable for lower Re and AR. 

Coproduction of Fructose and Ethanol from Dates by S. cerevisiae ATCC 36859

Coproduction of fructose and ethanol from dates extract by a glucose-selective S. cerevisiae ATCC 36859 strain has been studied. Various initial sugar concentrations (i.e., 131.4, 315.3, 408.2, and 500.0 g/l) have been tested. The fermentation experiments were performed in a water shaker bath at 30°C and 120 rpm. The results showed that highest yields of fructose (95.0%) and ethanol (72.8%) were achieved for the 131.4 g/l concentration. Increasing the initial concentration to 315.3 g/l resulted in lower yields of fructose (82.2%) and ethanol (61.0%). However, further increase to 408.2 g/l increased the fructose yield (97.5%) at the expense of ethanol yield (42.0%) due to probable substrate inhibitions that resulted in lower glucose conversion. At 500 g initial sugar/l the growth rate of ATCC 36859 was highly inhibited. 

A Study of Fatty Acid Production in the Batch Reactor via the Carbohydrate Fermentation by C. butyricum

Carbohydrate can be used as a substrate that can be consumed by C. butyricum and converted to useful chemicals such as acetic and butyric acid. Influence of concentration and types of carbohydrate to cell growth, carbohydrate consumed, productivity and carbon balance have been explored. Batch reactor was selected in this study to avoid contamination due to simpler operation system. Glucose was preferred as first types of carbohydrate to be tested. Six concentrations were studied from 0 to 28g/L. Eventually, 15g/L has shown the best concentration for glucose in term of growth rate (2.63h-1) and carbon balance (99.76% recovery). Comparison for types of carbohydrate was also conducted. 15g/L of xylose (monosaccharide) and starch (complex carbohydrate) was tested.  In term of growth rate and productivity, glucose showed the best carbohydrates. Results for this study showed that glucose and xylose produced more than 80% of acetic acid and less than 20% of butyric acid. Meanwhile, 63.1% of acetic acid and 36.9% of butyric acid were produced from starch. 

Design of Walking Beam Pendle Axle Suspension System

This paper deals with design of walking beam pendel axle suspension system. This axles and suspension systems are mainly required for transportation of heavy duty and Over Dimension Consignment (ODC) cargo, which is exceeding legal limit in terms of length, width and height. Presently, in Indian transportation industry, ODC movement growth rate has increased in transportation of bridge sections (pre-cast beams), transformers, heavy machineries, boilers, gas turbines, windmill blades etc. However, current Indian standard road transport vehicles are facing lot of service and maintenance issues due to non availability of suitable axle and suspension to carry the ODC cargoes. This in turn will lead to increased number of road accidents, bridge collapse and delayed deliveries, which finally result in higher operating cost. Understanding these requirements, this work was carried out. These axles and suspensions are designed for optimum self – weight with maximum payload carrying capacity with better road stability.

Financing Decision and Productivity Growth for the Venture Capital Industry Using High-Order Fuzzy Time Series

Human society, there are many uncertainties, such as economic growth rate forecast of the financial crisis, many scholars have, since the the Song Chissom two scholars in 1993 the concept of the so-called fuzzy time series (Fuzzy Time Series)different mode to deal with these problems, a previous study, however, usually does not consider the relevant variables selected and fuzzy process based solely on subjective opinions the fuzzy semantic discrete, so can not objectively reflect the characteristics of the data set, in addition to carrying outforecasts are often fuzzy rules as equally important, failed to consider the importance of each fuzzy rule. For these reasons, the variable selection (Factor Selection) through self-organizing map (Self-Organizing Map, SOM) and proposed high-end weighted multivariate fuzzy time series model based on fuzzy neural network (Fuzzy-BPN), and using the the sequential weighted average operator (Ordered Weighted Averaging operator, OWA) weighted prediction. Therefore, in order to verify the proposed method, the Taiwan stock exchange (Taiwan Stock Exchange Corporation) Taiwan Weighted Stock Index (Taiwan Stock Exchange Capitalization Weighted Stock Index, TAIEX) as experimental forecast target, in order to filter the appropriate variables in the experiment Finally, included in other studies in recent years mode in conjunction with this study, the results showed that the predictive ability of this study further improve.

Nile Red, an Alternative Fluorescence Method for Quantification of Neutral Lipids in Microalgae

According to biodiesel from microalgae is an attractive fuel for several reasons such as renewable, biodegradable and environmental friendly. Thus, this study, green microalgae Scenedesmus acutus PPNK1 isolated from natural water, was selected based on high growth rates, easy cultivation and high lipid content. The Nile red fluorescence method has been successfully applied to the determination of lipids in S. acutus PPNK1. The combination of the method to the lipid composition in algal cells showed the yellow fluorescence under fluorescent microscope. Interestingly, maximum cell numbers and biomass concentration were obtained at 5.44´107 cells/mL and 1.60 g/L when it was cultivated in BG-11 medium while in case of BG-11 with nitrogen deprivation (N 0.25 g/L), accumulated lipid content in cells (44.67%) was achieved that was higher than that found in case of BG-11 medium at about 2 times (22.63%).

Utilization of Laser-Ablation Based Analytical Methods for Obtaining Complete Chemical Information of Algae

Themain goal of this article is to find efficient methods for elemental and molecular analysis of living microorganisms (algae) under defined environmental conditions and cultivation processes. The overall knowledge of chemical composition is obtained utilizing laser-based techniques, Laser- Induced Breakdown Spectroscopy (LIBS) for acquiring information about elemental composition and Raman Spectroscopy for gaining molecular information, respectively. Algal cells were suspended in liquid media and characterized using their spectra. Results obtained employing LIBS and Raman Spectroscopy techniques will help to elucidate algae biology (nutrition dynamics depending on cultivation conditions) and to identify algal strains, which have the potential for applications in metal-ion absorption (bioremediation) and biofuel industry. Moreover, bioremediation can be readily combined with production of 3rd generation biofuels. In order to use algae for efficient fuel production, the optimal cultivation parameters have to be determinedleading to high production of oil in selected cellswithout significant inhibition of the photosynthetic activity and the culture growth rate, e.g. it is necessary to distinguish conditions for algal strain containing high amount of higher unsaturated fatty acids. Measurements employing LIBS and Raman Spectroscopy were utilized in order to give information about alga Trachydiscusminutus with emphasis on the amount of the lipid content inside the algal cell and the ability of algae to withdraw nutrients from its environment and bioremediation (elemental composition), respectively. This article can serve as the reference for further efforts in describing complete chemical composition of algal samples employing laserablation techniques.

Stability Analysis of Mutualism Population Model with Time Delay

This paper studies the effect of time delay on stability of mutualism population model with limited resources for both species. First, the stability of the model without time delay is analyzed. The model is then improved by considering a time delay in the mechanism of the growth rate of the population. We analyze the effect of time delay on the stability of the stable equilibrium point. Result showed that the time delay can induce instability of the stable equilibrium point, bifurcation and stability switches.

Quality Fed-Batch Bioprocess Control A Case Study

Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.

A Study of Neuro-Fuzzy Inference System for Gross Domestic Product Growth Forecasting

In this paper we present a Adaptive Neuro-Fuzzy System (ANFIS) with inputs the lagged dependent variable for the prediction of Gross domestic Product growth rate in six countries. We compare the results with those of Autoregressive (AR) model. We conclude that the forecasting performance of neuro-fuzzy-system in the out-of-sample period is much more superior and can be a very useful alternative tool used by the national statistical services and the banking and finance industry.

External Effects on Dynamic Competitive Model of Domestic Airline and High Speed Rail

Social-economic variables influence transportation demand largely. Analyses of discrete choice model consider social-economic variables to study traveler-s mode choice and demand. However, to calibrate the discrete choice model needs to have plenty of questionnaire survey. Also, an aggregative model is proposed. The historical data of passenger volumes for high speed rail and domestic civil aviation are employed to calibrate and validate the model. In this study, models with different social-economic variables, which are oil price, GDP per capita, CPI and economic growth rate, are compared. From the results, the model with the oil price is better than models with the other social-economic variables.

Fatigue Crack Growth Behavior in Dissimilar Metal Weldment of Stainless Steel and Carbon Steel

Constant amplitude fatigue crack growth (FCG) tests were performed on dissimilar metal welded plates of Type 316L Stainless Steel (SS) and IS 2062 Grade A Carbon steel (CS). The plates were welded by TIG welding using SS E309 as electrode. FCG tests were carried on the Side Edge Notch Tension (SENT) specimens of 5 mm thickness, with crack initiator (notch) at base metal region (BM), weld metal region (WM) and heat affected zones (HAZ). The tests were performed at a test frequency of 10 Hz and at load ratios (R) of 0.1 & 0.6. FCG rate was found to increase with stress ratio for weld metals and base metals, where as in case of HAZ, FCG rates were almost equal at high ΔK. FCG rate of HAZ of stainless steel was found to be lowest at low and high ΔK. At intermediate ΔK, WM showed the lowest FCG rate. CS showed higher crack growth rate at all ΔK. However, the scatter band of data was found to be narrow. Fracture toughness (Kc) was found to vary in different locations of weldments. Kc was found lowest for the weldment and highest for HAZ of stainless steel. A novel method of characterizing the FCG behavior using an Infrared thermography (IRT) camera was attempted. By monitoring the temperature rise at the fast moving crack tip region, the amount of plastic deformation was estimated.

Evaluation of the Microbiological, Chemical and Sensory Quality of Carp Processed by the Sous Vide Method

This study evaluated the microbiological quality and the sensory characteristics of carp fillets processed by the sousvide method when stored at 2 and 10 °C. Four different combinations of sauced–storage were studied then stored at 2 or 10 °C was evaluate periodically sensory, microbiological and chemical quality. Batches stored at 2 °C had lower growth rates of mesophiles and psychrotrophs. Moreover, these counts decreased by increasing the heating temperature and time. Staphylococcus aureus, Bacillus cereus, Clostridium perfringens and Listeria monocytogenes were not found in any of the samples. The heat treatment of 90 °C for 15 min and sauced was the most effective to ensure the safety and extend the shelf-life of sousvide carp preserving its sensory characteristics. This study establishes the microbiological quality of sous vide carp and emphasizes the relevance of the raw materials, heat treatment and storage temperature to ensure the safety of the product.

Fatigue Crack Initiation and Propagation through Residual Stress Field

In this paper fatigue crack initiation and propagation in notched plate under constant amplitude loading through tensile residual stress field of 2024 T351 Al-alloy plate were investigated. Residual stress field was generated by plastic deformation using finite element method (FEM) where isotropic hardening in Von Mises model was applied. Simulation of fatigue behavior was made on AFGROW code. It was shown that the fatigue crack initiation and propagation were affected by level of residual stress filed. In this investigation, the presence of tensile residual stresses at notch (hole) reduces considerably the total fatigue life. It was shown that the decreasing in stress reduces the fatigue crack growth rates.

Application of Neural Networks in Power Systems; A Review

The electric power industry is currently undergoing an unprecedented reform. One of the most exciting and potentially profitable recent developments is increasing usage of artificial intelligence techniques. The intention of this paper is to give an overview of using neural network (NN) techniques in power systems. According to the growth rate of NNs application in some power system subjects, this paper introduce a brief overview in fault diagnosis, security assessment, load forecasting, economic dispatch and harmonic analyzing. Advantages and disadvantages of using NNs in above mentioned subjects and the main challenges in these fields have been explained, too.