Seismic Fragility Assessment of Strongback Steel Braced Frames Subjected to Near-Field Earthquakes

In this paper, seismic fragility assessment of a recently developed hybrid structural system, known as the strongback system (SBS) is investigated. In this system, to mitigate the occurrence of the soft-story mechanism and improve the distribution of story drifts over the height of the structure, an elastic vertical truss is formed. The strengthened members of the braced span are designed to remain substantially elastic during levels of excitation where soft-story mechanisms are likely to occur and impose a nearly uniform story drift distribution. Due to the distinctive characteristics of near-field ground motions, it seems to be necessary to study the effect of these records on seismic performance of the SBS. To this end, a set of 56 near-field ground motion records suggested by FEMA P695 methodology is used. For fragility assessment, nonlinear dynamic analyses are carried out in OpenSEES based on the recommended procedure in HAZUS technical manual. Four damage states including slight, moderate, extensive, and complete damage (collapse) are considered. To evaluate each damage state, inter-story drift ratio and floor acceleration are implemented as engineering demand parameters. Further, to extend the evaluation of the collapse state of the system, a different collapse criterion suggested in FEMA P695 is applied. It is concluded that SBS can significantly increase the collapse capacity and consequently decrease the collapse risk of the structure during its life time. Comparing the observing mean annual frequency (MAF) of exceedance of each damage state against the allowable values presented in performance-based design methods, it is found that using the elastic vertical truss, improves the structural response effectively.

The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties

The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.

Spatial Planning and Tourism Development with Sustainability Model of the Territorial Tourist with Land Use Approach

In the last decade, with increasing tourism destinations and tourism growth, we are witnessing the widespread impacts of tourism on the economy, environment and society. Tourism and its related economy are now undergoing a transformation and as one of the key pillars of business economics, it plays a vital role in the world economy. Activities related to tourism and providing services appropriate to it in an area, like many economic sectors, require the necessary context on its origin. Given the importance of tourism industry and tourism potentials of Yazd province in Iran, it is necessary to use a proper procedure for prioritizing different areas for proper and efficient planning. One of the most important goals of planning is foresight and creating balanced development in different geographical areas. This process requires an accurate study of the areas and potential and actual talents, as well as evaluation and understanding of the relationship between the indicators affecting the development of the region. At the global and regional level, the development of tourist resorts and the proper distribution of tourism destinations are needed to counter environmental impacts and risks. The main objective of this study is the sustainable development of suitable tourism areas. Given that tourism activities in different territorial areas require operational zoning, this study deals with the evaluation of territorial tourism using concepts such as land use, fitness and sustainable development. It is essential to understand the structure of tourism development and the spatial development of tourism using land use patterns, spatial planning and sustainable development. Tourism spatial planning implements different approaches. However, the development of tourism as well as the spatial development of tourism is complex, since tourist activities can be carried out in different areas with different purposes. Multipurpose areas have great important for tourism because it determines the flow of tourism. Therefore, in this paper, by studying the development and determination of tourism suitability that is related to spatial development, it is possible to plan tourism spatial development by developing a model that describes the characteristics of tourism. The results of this research determine the suitability of multi-functional territorial tourism development in line with spatial planning of tourism.

The Effect of Zeolite on Sandy-Silt Soil Mechanical Properties

It is well known that cemented sand is one of the best approaches for soil stabilization. In some cases, a blend of sand, cement and other pozzolan materials such as zeolite, nano-particles and fiber can be widely (commercially) available and be effectively used in soil stabilization, especially in road construction. In this research, we investigate the effects of CaO which is based on the geotechnical characteristics of zeolite composition with sandy silt soil. Zeolites have low amount of CaO in their structures, that is, varying from 3% to 10%, and by removing the cement paste, we want to investigate the effect of zeolite pozzolan without any activator on soil samples strength. In this research, experiments are concentrated on various weight percentages of zeolite in the soil to examine the effect of the zeolite on drainage shear strength and California Bearing Ratio (CBR) both with and without curing. The study also investigates their liquid limit and plastic limit behavior and makes a comparative result by using Feng's and Wroth-Wood's methods in fall cone (cone penetrometer) device; in the final the SEM images have been presented. The results show that by increasing the percentage of zeolite in without-curing samples, the fine zeolite particles increase some soil's strength, but in the curing-state we can see a relatively higher strength toward without-curing state, since the zeolites have no plastic behavior, the pozzolanic property of zeolites plays a much higher role than cementing properties. Indeed, it is better to combine zeolite particle with activator material such as cement or lime to gain better results.

The OLOS® Way to Cultural Heritage: User Interface with Anthropomorphic Characteristics

Augmented Reality and Augmented Intelligence are radically changing information technology. The path that starts from the keyboard and then, passing through milestones such as Siri, Alexa and other vocal avatars, reaches a more fluid and natural communication with computers, thus converting the dichotomy between man and machine into a harmonious interaction, now heads unequivocally towards a new IT paradigm, where holographic computing will play a key role. The OLOS® platform contributes substantially to this trend in that it infuses computers with human features, by transferring the gestures and expressions of persons of flesh and bones to anthropomorphic holographic interfaces which in turn will use them to interact with real-life humans. In fact, we could say, boldly but with a solid technological background to back the statement, that OLOS® gives reality to an altogether new entity, placed at the exact boundary between nature and technology, namely the holographic human being. Holographic humans qualify as the perfect carriers for the virtual reincarnation of characters handed down from history and tradition. Thus, they provide for an innovative and highly immersive way of experiencing our cultural heritage as something alive and pulsating in the present.

Spatial Variability of Brahmaputra River Flow Characteristics

Brahmaputra River is known according to the Hindu mythology the son of the Lord Brahma. According to this name, the river Brahmaputra creates mass destruction during the monsoon season in Assam, India. It is a state situated in North-East part of India. This is one of the essential states out of the seven countries of eastern India, where almost all entire Brahmaputra flow carried out. The other states carry their tributaries. In the present case study, the spatial analysis performed in this specific case the number of MODIS data are acquired. In the method of detecting the change, the spray content was found during heavy rainfall and in the flooded monsoon season. By this method, particularly the analysis over the Brahmaputra outflow determines the flooded season. The charged particle-associated in aerosol content genuinely verifies the heavy water content below the ground surface, which is validated by trend analysis through rainfall spectrum data. This is confirmed by in-situ sampled view data from a different position of Brahmaputra River. Further, a Hyperion Hyperspectral 30 m resolution data were used to scan the sediment deposits, which is also confirmed by in-situ sampled view data from a different position.

Bold Headlines of Urban Eyescapes: A Computational Approach of Urban Mapping via Digital Surveying and Eye-Tracking Technologies

The sensory stimuli from the urban environment are often distinguished as subtle structures that derive from experiencing the city. The experience of the urban environment is also related to the social relationships and memories that complete the 'urban eyescapes' and the way individuals can recall them. Despite the fact that the consideration of urban sensory stimuli is part of urban design, currently the account of visual experience in urban studies is hard to be identified. This article explores ways of recording how the senses mediate one's engagement with the urban environment. This study involves an experiment in the urban environment of the Copenhagen city centre, with 20 subjects performing a walking task. The aim of the experiment is to categorize the visual 'Bold Headlined Stimuli’ (BHS) of the examined environment, using eye-tracking techniques. The analysis allows us to identify the Headlining Stimuli Process, (HSP) in the select urban environment. HSP is significantly mediated by body mobility and perceptual memories and has shown how urban stimuli influence the intelligibility and the recalling patterns of the urban characteristics. The results have yielded a 'Bold Headline list' of stimuli related to: the spatial characteristics of higher preference; the stimuli that are relevant to livability; and the spatial dimensions easier to recall. The data of BHS will be used in cross-disciplinary city analysis. In the future, these results could be useful in urban design, to provide information on how urban space affects the human activities.

Research Regarding Resistance Characteristics of Biscuits Assortment Using Cone Penetrometer

In the activity of handling and transport of food products, the products may be subjected to mechanical stresses that may lead to their deterioration by deformation, breaking, or crushing. This is the case for biscuits, regardless of their type (gluten-free or sugary), the addition of ingredients or flour from which they are made. However, gluten-free biscuits have a higher mechanical resistance to breakage or crushing compared to easily shattered sugar biscuits (especially those for children). The paper presents the results of the experimental evaluation of the texture for four varieties of commercial biscuits, using the penetrometer equipped with needle cone at five different additional weights on the cone-rod. The assortments of biscuits tested in the laboratory were Petit Beurre, Picnic, and Maia (all three manufactured by RoStar, Romania) and Sultani diet biscuits, manufactured by Eti Burcak Sultani (Turkey, in packs of 138 g). For the four varieties of biscuits and the five additional weights (50, 77, 100, 150 and 177 g), the experimental data obtained were subjected to regression analysis in the MS Office Excel program, using Velon's relationship (h = a∙ln(t) + b). The regression curves were analysed comparatively in order to identify possible differences and to highlight the variation of the penetration depth h, in relation to the time t. Based on the penetration depth between two-time intervals (every 5 seconds), the curves of variation of the penetration speed in relation to time were then drawn. It was found that Velon's law verifies the experimental data for all assortments of biscuits and for all five additional weights. The correlation coefficient R2 had in most of the analysed cases values over 0.850. The values recorded for the penetration depth were framed, in general, within 45-55 p.u. (penetrometric units) at an additional mass of 50 g, respectively between 155-168 p.u., at an additional mass of 177 g, at Petit Beurre biscuits. For Sultani diet biscuits, the values of the penetration depth were within the limits of 32-35 p.u., at an additional weight of 50 g and between 80-114 p.u., at an additional weight of 177g. The data presented in the paper can be used by both operators on the manufacturing technology flow, as well as by the traders of these food products, in order to establish the most efficient parametric of the working regimes (when packaging and handling).

Dynamic Stall Characterization of Low Reynolds Airfoil in Mars and Titan’s Atmosphere

Exploratory missions to Mars and Titan have increased recently with various endeavors to find an alternate home to humankind. The use of surface rovers has its limitations due to rugged and uneven surfaces of these planetary bodies. The use of aerial robots requires the complete aerodynamic characterization of these vehicles in the atmospheric conditions of these planetary bodies. The dynamic stall phenomenon is extremely important for rotary wings performance under low Reynolds number that can be encountered in Martian and Titan’s atmosphere. The current research focuses on the aerodynamic characterization and exploration of the dynamic stall phenomenon of two different airfoils viz. E387 and Selig-Donovan7003 in Martian and Titan’s atmosphere at low Reynolds numbers of 10000 and 50000. The two-dimensional numerical simulations are conducted using commercially available finite volume solver with multi-species non-reacting mixture of gases as the working fluid. The k-epsilon (k-ε) turbulence model is used to capture the unsteady flow separation and the effect of turbulence. The dynamic characteristics are studied at a fixed different constant rotational extreme of angles of attack. This study of airfoils at different low Reynolds number and atmospheric conditions on Mars and Titan will be resulting in defining the aerodynamic characteristics of these airfoils for unmanned aerial missions for outer space exploration.

Analysis of Residents’ Travel Characteristics and Policy Improving Strategies

To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.

Clean Sky 2 – Project PALACE: Aeration’s Experimental Sound Velocity Investigations for High-Speed Gerotor Simulations

A Gerotor pump is composed of an external and internal gear with conjugate cycloidal profiles. From suction to delivery ports, the fluid is transported inside cavities formed by teeth and driven by the shaft. From a geometric and conceptional side it is worth to note that the internal gear has one tooth less than the external one. Simcenter Amesim v.16 includes a new submodel for modelling the hydraulic Gerotor pumps behavior (THCDGP0). This submodel considers leakages between teeth tips using Poiseuille and Couette flows contributions. From the 3D CAD model of the studied pump, the “CAD import” tool takes out the main geometrical characteristics and the submodel THCDGP0 computes the evolution of each cavity volume and their relative position according to the suction or delivery areas. This module, based on international publications, presents robust results up to 6 000 rpm for pressure greater than atmospheric level. For higher rotational speeds or lower pressures, oil aeration and cavitation effects are significant and highly drop the pump’s performance. The liquid used in hydraulic systems always contains some gas, which is dissolved in the liquid at high pressure and tends to be released in a free form (i.e. undissolved as bubbles) when pressure drops. In addition to gas release and dissolution, the liquid itself may vaporize due to cavitation. To model the relative density of the equivalent fluid, modified Henry’s law is applied in Simcenter Amesim v.16 to predict the fraction of undissolved gas or vapor. Three parietal pressure sensors have been set up upstream from the pump to estimate the sound speed in the oil. Analytical models have been compared with the experimental sound speed to estimate the occluded gas content. Simcenter Amesim v.16 model was supplied by these previous analyses marks which have successfully improved the simulations results up to 14 000 rpm. This work provides a sound foundation for designing the next Gerotor pump generation reaching high rotation range more than 25 000 rpm. This improved module results will be compared to tests on this new pump demonstrator.

Validity of Universe Structure Conception as Nested Vortexes

This paper introduces the Nested Vortexes conception of the universe structure and interprets all the physical phenomena according this conception. The paper first reviews recent physics theories, either in microscopic scale or macroscopic scale, to collect evidence that the space is not empty. But, these theories describe the property of the space medium without determining its structure. Determining the structure of space medium is essential to understand the mechanism that leads to its properties. Without determining the space medium structure, many phenomena; such as electric and magnetic fields, gravity, or wave-particle duality remain uninterpreted. Thus, this paper introduces a conception about the structure of the universe. It assumes that the universe is a medium of ultra-tiny homogeneous particles which are still undiscovered. Like any medium with certain movements, possibly because of a great asymmetric explosion, vortexes have occurred. A vortex condenses the ultra-tiny particles in its center forming a bigger particle, the bigger particles, in turn, could be trapped in a bigger vortex and condense in its center forming a much bigger particle and so on. This conception describes galaxies, stars, protons as particles at different levels. Existing of the particle’s vortexes make the consistency of the speed of light postulate is not true. This conception shows that the vortex motion dynamic agrees with the motion of all the universe particles at any level. An experiment has been carried out to detect the orbiting effect of aggregated vortexes of aligned atoms of a permanent magnet. Based on the described particle’s structure, the gravity force of a particle and attraction between particles as well as charge, electric and magnetic fields and quantum mechanics characteristics are interpreted. All augmented physics phenomena are solved.

Insiders’ Perspectives of Countering Public Sector Corruption in Nigeria: Identifying and Targeting Its Nature, Characteristics and Fundamental Causes

This paper explores the extent, nature, and characteristics of public sector corruption in Nigeria and the enhancement of the major anti-corruption initiatives (reforms), thereby providing insight into the types, forms and causes of corruption in Nigeria. This paper argues that attempts to devise and suggest effective anti-corruption reforms to control systemic corruption in Nigeria require identifying the most prevalent types of corruption targeted and tackling the fundamental country specific causes. It analyses two types of public sector corruption as it relates to Nigeria and the workings of its inefficient governance system. This paper concludes with the imperative of a collective action against corruption supported by considerable amount of domestic political will existing in a favourable policy context. In undertaking this, the paper draws upon publicly available documents, case laws review and semi-structured interviews conducted with various personnel working in the field of corruption in the dedicated anticorruption agencies, academics, and practitioners from other relevant institutions of accountability.

Information System for Early Diabetic Retinopathy Diagnostics Based on Multiscale Texture Gradient Method

Structures of eye bottom were extracted using multiscale texture gradient method and color characteristics of macular zone and vessels were verified in CIELAB scale. The difference of average values of L*, a* and b* coordinates of CIE (International Commision of Illumination) scale in patients with diabetes and healthy volunteers was compared. The average value of L* in diabetic patients exceeded such one in the group of practically healthy persons by 2.71 times (P 

Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding

Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.

The Significance of Cultural Risks for Western Consultants Executing Gulf Cooperation Council Megaprojects

Differences in commercial, professional and personal cultural traditions between western consultants and project sponsors in the Gulf Cooperation Council (GCC) region are potentially significant in the workplace, and this can impact on project outcomes. These cultural differences can, for example, result in conflict amongst senior managers, which can negatively impact the megaproject. New entrants to the GCC often experience ‘culture shock’ as they attempt to integrate into their unfamiliar environments. Megaprojects are unique ventures with individual project characteristics, which need to be considered when managing their associated risks. Megaproject research to date has mostly ignored the significance of the absence of cultural congruence in the GCC, which is surprising considering that there are large volumes of megaprojects in various stages of construction in the GCC. An initial step to dealing with cultural issues is to acknowledge culture as a significant risk factor (SRF). This paper seeks to understand the criticality for western consultants to address these risks. It considers the cultural barriers that exist between GCC sponsors and western consultants and examines the cultural distance between the key actors. Initial findings suggest the presence to a certain extent of ethnocentricity. Other cultural clashes arise out of a lack of appreciation of the customs, practices and traditions of ‘the Other’, such as the need for avoiding public humiliation and the hierarchal significance rankings. The concept and significance of cultural shock as part of the integration process for new arrivals are considered. Culture shock describes the state of anxiety and frustration resulting from the immersion in a culture distinctly different from one's own. There are potentially substantial project risks associated with underestimating the process of cultural integration. This paper examines two distinct but intertwined issues: the societal and professional culture differences associated with expatriate assignments. A case study examines the cultural congruences between GCC sponsors and American, British and German consultants, over a ten-year cycle. This provides indicators as to which nationalities encountered the most profound cultural issues and the nature of these. GCC megaprojects are typically intensive fast track demanding ventures, where consultant turnover is high. The study finds that building trust-filled relationships is key to successful project team integration and therefore, to successful megaproject execution. Findings indicate that both professional and social inclusion processes have steep learning curves. Traditional risk management practice is to approach any uncertainty in a structured way to mitigate the potential impact on project outcomes. This research highlights cultural risk as a significant factor in the management of GCC megaprojects. These risks arising from high staff turnover typically include loss of project knowledge, delays to the project, cost and disruption in replacing staff. This paper calls for cultural risk to be recognised as an SRF, as the first step to developing risk management strategies, and to reduce staff turnover for western consultants in GCC megaprojects.

Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy

Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.

Effect of Good Agriculture Management Practices and Constraints on Grape Farming: A Case Study in Mirbachakot, Kalakan and Shakardara Districts Kabul, Afghanistan

Skillful management is one of the most important success factors for today’s farms. When a farm is well managed, it can generate funds for its sustainability. Grape is one of the most diffused fruits in the world and one of the most important cash crops with high potential of production in Afghanistan as well. While there are several organizations intervening for improvement of this cash crop, the quality and quantity are still not satisfactory for producers and external markets. The situation has not changed over the years. Therefore, a survey was conducted in 2017 with 60 grape growers, supported by questionnaires in Mirbachakot, Kalakan and Shakardara districts of Kabul province. The purpose was to get an understanding of the current socio-demographic characteristics of farmers, management methods, constraints, farm size, yield and contribution of grape farming to household income. Findings indicate that grape farming was predominant 83.3% male, 16.6% female and small-scale farmers were the main grape producers, 60% < 1 ha of land under grape production. Likewise, 50% had more than > 10 years and 33.3% between 1-5 years’ experience in grape farming. The high level of illiteracy and diseases had significant digit effect on growth, yield and quality of grapes. The results showed that vineyard management operations to protect grapes from mechanical damage are very poor or completely absent. Comparing developed countries, table grape is one of the fruits with the highest input of technology, while in developing countries the cost of labor is low but the purchase of the equipment is very high due to financial situation. Hence the low quality and quantity of grape are influenced by poor management methods, such as non-availability of experts and lack of technical guidance in the study site. Thereby, the study suggested that improved agricultural extension services and managerial skills could contribute to addressing the problems.

Identifying the Strength of Cyclones and Earthquakes Requiring Military Disaster Response

The United States military is now commonly responding to complex humanitarian emergencies and natural disasters around the world. From catastrophic earthquakes in Haiti to typhoons devastating the Philippines, U.S. military assistance is requested when the event exceeds the local government's ability to assist the population. This study assesses the characteristics of catastrophes that surpass a nation’s individual ability to respond and recover from the event. The paper begins with a historical summary of military aid and then analyzes over 40 years of the United States military humanitarian response. Over 300 military operations were reviewed and coded based on the nature of the disaster. This in-depth study reviewed the U.S. military’s deployment events for cyclones and earthquakes to determine the strength of the natural disaster requiring external assistance. The climatological data for cyclone landfall and magnitude data for earthquake epicenters were identified, grouped into regions and analyzed for time-based trends. The results showed that foreign countries will likely request the U.S. military for cyclones with speeds greater or equal to 125 miles an hour and earthquakes at the magnitude of 7.4 or higher. These results of this study will assist the geographic combatant commands in determining future military response requirements.

Railway Crane Accident: A Comparative Metallographic Test on Pins Fractured during Operation

Eventually train accidents occur on railways and for some specific cases it is necessary to use a train rescue with a crane positioned under a platform wagon. These tumbled machines are collected and sent to the machine shop or scrap yard. In one of these cranes that were being used to rescue a wagon, occurred a fall of hoist due to fracture of two large pins. The two pins were collected and sent for failure analysis. This work investigates the main cause and the secondary causes for the initiation of the fatigue crack. All standard failure analysis procedures were applied, with careful evaluation of the characteristics of the material, fractured surfaces and, mainly, metallographic tests using an optical microscope to compare the geometry of the peaks and valleys of the thread of the pins and their respective seats. By metallographic analysis, it was concluded that the fatigue cracks were started from a notch (stress concentration) in the valley of the threads of the pin applied to the right side of the crane (pin 1). In this, it was verified that the peaks of the threads of the pin seat did not have proper geometry, with sharp edges being present that caused such notches. The visual analysis showed that fracture of the pin on the left side of the crane (pin 2) was brittle type, being a consequence of the fracture of the first one. Recommendations for this and other railway cranes have been made, such as nondestructive testing, stress calculation, design review, quality control and suitability of the mechanical forming process of the seat threads and pin threads.