Investigation of Undular Hydraulic Jump over Smooth Beds

Undular hydraulic jumps are illustrated by a smooth rise of the free surface followed by a train of stationary waves. They are sometimes experienced in natural waterways and rivers. The characteristics of undular hydraulic jumps are studied here. The height, amplitude and the main characteristics of undular jump is depended on the upstream Froude number and aspect ratio. The experiments were done on the smooth bed flume. These results compared with other researches and the main characteristics of the undular hydraulic jump were studied in this article.

Studying Effects of Alternative Biodiesel Fuel in Performance and Pollutants of Diesel Engines

Since injection engines have a considerable portion, in consumption of energy and environmental pollution, using an alternative source of energy with lower pollutant effects in this regard is necessary. Biodiesel fuel is a suitable alternative for gasoline in diesel engines. In this research the property of biodiesel, the function and the pollution effects of diesel engine, when using 100% biodiesel, using 100% gasoline and mixing ratio of both fuels for comparing them, have been investigated. The researches have shown, using biodiesel fuel in prevalent diesel engine, will reduce the pollutants such as Co, half burned carbohydrate and suspended particles and a little increase in oxidation will achieve while power consumption, particularly fuel and thermal efficiency of diesel fuel has the same.

Development of a Water-Jet Assisted Underwater Laser Cutting Process

We present the development of a new underwater laser cutting process in which a water-jet has been used along with the laser beam to remove the molten material through kerf. The conventional underwater laser cutting usually utilizes a high pressure gas jet along with laser beam to create a dry condition in the cutting zone and also to eject out the molten material. This causes a lot of gas bubbles and turbulence in water, and produces aerosols and waste gas. This may cause contamination in the surrounding atmosphere while cutting radioactive components like burnt nuclear fuel. The water-jet assisted underwater laser cutting process produces much less turbulence and aerosols in the atmosphere. Some amount of water vapor bubbles is formed at the laser-metal-water interface; however, they tend to condense as they rise up through the surrounding water. We present the design and development of a water-jet assisted underwater laser cutting head and the parametric study of the cutting of AISI 304 stainless steel sheets with a 2 kW CW fiber laser. The cutting performance is similar to that of the gas assist laser cutting; however, the process efficiency is reduced due to heat convection by water-jet and laser beam scattering by vapor. This process may be attractive for underwater cutting of nuclear reactor components.

The Role of Ga to Improve AlN-Nucleation Layer for Al0.1Ga0.9N/Si(111)

Group-III nitride material as particularly AlxGa1-xN is one of promising optoelectronic materials to require for shortwavelength devices. To achieve the high-quality AlxGa1-xN films for a high performance of such devices, AlN-nucleation layers are the important factor. To improve the AlN-nucleation layers with a variation of Ga-addition, XRD measurements were conducted to analyze the crystalline quality of the subsequent Al0.1Ga0.9N with the minimum ω-FWHMs of (0002) and (10-10) reflections of 425 arcsec and 750 arcsec, respectively. SEM and AFM measurements were performed to observe the surface morphology and TEM measurements to identify the microstructures and orientations. Results showed that the optimized Ga-atoms in the Al(Ga)Nnucleation layers improved the surface diffusion to form moreuniform crystallites in structure and size, better alignment of each crystallite, and better homogeneity of island distribution. This, hence, improves the orientation of epilayers on the Si-surface and finally improves the crystalline quality and reduces the residual strain of subsequent Al0.1Ga0.9N layers.

Low-Cost Pre-Treatment of Pharmaceutical Wastewater

Pharmaceutical industries and effluents of sewage treatment plants are the main sources of residual pharmaceuticals in water resources. These emergent pollutants may adversely impact the biophysical environment. Pharmaceutical industries often generate wastewater that changes in characteristics and quantity depending on the used manufacturing processes. Carbamazepine (CBZ), {5Hdibenzo [b,f]azepine-5-carboxamide, (C15H12N2O)}, is a significant non-biodegradable pharmaceutical contaminant in the Jordanian pharmaceutical wastewater, which is not removed by the activated sludge processes in treatment plants. Activated carbon may potentially remove that pollutant from effluents, but the high cost involved suggests that more attention should be given to the potential use of low-cost materials in order to reduce cost and environmental contamination. Powders of Jordanian non-metallic raw materials namely, Azraq Bentonite (AB), Kaolinite (K), and Zeolite (Zeo) were activated (acid and thermal treatment) and evaluated by removing CBZ. The results of batch and column techniques experiments showed around 46% and 67% removal of CBZ respectively.

The Sequestration of Heavy Metals Contaminating the Wonderfonteinspruit Catchment Area using Natural Zeolite

For more than 120 years, gold mining formed the backbone the South Africa-s economy. The consequence of mine closure was observed in large-scale land degradation and widespread pollution of surface water and groundwater. This paper investigates the feasibility of using natural zeolite in removing heavy metals contaminating the Wonderfonteinspruit Catchment Area (WCA), a water stream with high levels of heavy metals and radionuclide pollution. Batch experiments were conducted to study the adsorption behavior of natural zeolite with respect to Fe2+, Mn2+, Ni2+, and Zn2+. The data was analysed using the Langmuir and Freudlich isotherms. Langmuir was found to correlate the adsorption of Fe2+, Mn2+, Ni2+, and Zn2+ better, with the adsorption capacity of 11.9 mg/g, 1.2 mg/g, 1.3 mg/g, and 14.7 mg/g, respectively. Two kinetic models namely, pseudo-first order and pseudo second order were also tested to fit the data. Pseudo-second order equation was found to be the best fit for the adsorption of heavy metals by natural zeolite. Zeolite functionalization with humic acid increased its uptake ability.

Studies on the Blended Concrete Prepared with Tannery Effluent

There is a acute water problem especially in the dry season in and around Perundurai (Erode district, Tamil Nadu, India) where there are more number of tannery units. Hence an attempt was made to use the waste water from tannery industry for construction purpose. The mechanical properties such as compressive strength, tensile strength, flexural strength etc were studied by casting various concrete specimens in form of cube, cylinders and beams etc and were found to be satisfactory. Hence some special properties such as chloride attack, sulphate attack and chemical attack are considered and comparatively studied with the conventional potable water. In this experimental study the results of specimens prepared by using treated and untreated tannery effluent were compared with the concrete specimens prepared by using potable water. It was observed that the concrete had some reduction in strength while subjected to chloride attack, sulphate attack and chemical attack. So admixtures were selected and optimized in suitable proportion to counter act the adverse effects and the results were found to be satisfactory.

Real-Time Detecting Concentration of Mycobacterium Tuberculosis by CNTFET Biosensor

Aptamers are useful tools in microorganism researches, diagnoses, and treatment. Aptamers are specific target molecules formed by oligonucleic acid molecules, and are not decomposed by alcohol. Aptamers used to detect Mycobacterium tuberculosis (MTB) have been proved to have specific affinity to the outer membrane proteins of MTB. This article presents a biosensor chip set with aptamers for early detection of MTB with high specificity and sensitivity, even in very low concentration. Meanwhile, we have already made a modified hydrophobic facial mask module with internal rendering hydrophobic for effectively collecting M. tuberculosis.

The Determination of Cellulose Spiral Angle by Small-Angle X-Ray Scattering from Structurally Characterized Acacia mangium Cell Wall

The spiral angle of the elementary cellulose fibril in the wood cell wall, often called microfibril angle, (MFA). Microfibril angle in hardwood is one of the key determinants of solid timber performance due to its strong influence on the stiffness, strength, shrinkage, swelling, thermal-dynamics mechanical properties and dimensional stability of wood. Variation of MFA (degree) in the S2 layer of the cell walls among Acacia mangium trees was determined using small-angle X-ray scattering (SAXS). The length and orientation of the microfibrils of the cell walls in the irradiated volume of the thin samples are measured using SAXS and optical microscope for 3D surface measurement. The undetermined parameters in the analysis are the MFA, (M) and the standard deviation (σФ) of the intensity distribution arising from the wandering of the fibril orientation about the mean value. Nine separate pairs of values are determined for nine different values of the angle of the incidence of the X-ray beam relative to the normal to the radial direction in the sample. The results show good agreement. The curve distribution of scattered intensity for the real cell wall structure is compared with that calculated with that assembly of rectangular cells with the same ratio of transverse to radial cell wall length. It is demonstrated that for β = 45°, the peaks in the curve intensity distribution for the real and the rectangular cells coincide. If this peak position is Ф45, then the MFA can be determined from the relation M = tan-1 (tan Ф45 / cos 45°), which is precise for rectangular cells. It was found that 92.93% of the variation of MFA can be attributed to the distance from pith to bark. Here we shall present our results of the MFA in the cell wall with respect to its shape, structure and the distance from pith to park as an important fast check and yet accurate towards the quality of wood, its uses and application.

Biplot Analysis for Evaluation of Tolerance in Some Bean (Phaseolus vulgaris L.) Genotypes to Bean Common Mosaic Virus (BCMV)

The common bean is the most important grain legume for direct human consumption in the world and BCMV is one of the world's most serious bean diseases that can reduce yield and quality of harvested product. To determine the best tolerance index to BCMV and recognize tolerant genotypes, 2 experiments were conducted in field conditions. Twenty five common bean genotypes were sown in 2 separate RCB design with 3 replications under contamination and non-contamination conditions. On the basis of the results of indices correlations GMP, MP and HARM were determined as the most suitable tolerance indices. The results of principle components analysis indicated 2 first components totally explained 98.52% of variations among data. The first and second components were named potential yield and stress susceptible respectively. Based on the results of BCMV tolerance indices assessment and biplot analysis WA8563-4, WA8563-2 and Cardinal were the genotypes that exhibited potential seed yield under contamination and noncontamination conditions.

Linear-Operator Formalism in the Analysis of Omega Planar Layered Waveguides

A complete spectral representation for the electromagnetic field of planar multilayered waveguides inhomogeneously filled with omega media is presented. The problem of guided electromagnetic propagation is reduced to an eigenvalue equation related to a 2 ´ 2 matrix differential operator. Using the concept of adjoint waveguide, general bi-orthogonality relations for the hybrid modes (either from the discrete or from the continuous spectrum) are derived. For the special case of homogeneous layers the linear operator formalism is reduced to a simple 2 ´ 2 coupling matrix eigenvalue problem. Finally, as an example of application, the surface and the radiation modes of a grounded omega slab waveguide are analyzed.

An Evaluation of Sputum Smear Conversion and Haematological Parameter Alteration in Early Detection Period of New Pulmonary Tuberculosis (PTB) Patients

Sputum smear conversion after one month of antituberculosis therapy in new smear positive pulmonary tuberculosis patients (PTB+) is a vital indicator towards treatment success. The objective of this study is to determine the rate of sputum smear conversion in new PTB+ patients after one month under treatment of National Institute of Diseases of the Chest and Hospital (NIDCH). Analysis of sputum smear conversion was done by re-clinical examination with sputum smear microscopic test after one month. Socio-demographic and hematological parameters were evaluated to perceive the correlation with the disease status. Among all enrolled patients only 33.33% were available for follow up diagnosis and of them only 42.86% patients turned to smear negative. Probably this consequence is due to non-coherence to the proper disease management. 66.67% and 78.78% patients reported low haemoglobin and packed cell volume level respectively whereas 80% and 93.33% patients accounted accelerated platelet count and erythrocyte sedimentation rate correspondingly.

Meta Model Based EA for Complex Optimization

Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiency

A Method for Quality Inspection of Motors by Detecting Abnormal Sound

Recently, a quality of motors is inspected by human ears. In this paper, I propose two systems using a method of speech recognition for automation of the inspection. The first system is based on a method of linear processing which uses K-means and Nearest Neighbor method, and the second is based on a method of non-linear processing which uses neural networks. I used motor sounds in these systems, and I successfully recognize 86.67% of motor sounds in the linear processing system and 97.78% in the non-linear processing system.

Structural Parsing of Natural Language Text in Tamil Using Phrase Structure Hybrid Language Model

Parsing is important in Linguistics and Natural Language Processing to understand the syntax and semantics of a natural language grammar. Parsing natural language text is challenging because of the problems like ambiguity and inefficiency. Also the interpretation of natural language text depends on context based techniques. A probabilistic component is essential to resolve ambiguity in both syntax and semantics thereby increasing accuracy and efficiency of the parser. Tamil language has some inherent features which are more challenging. In order to obtain the solutions, lexicalized and statistical approach is to be applied in the parsing with the aid of a language model. Statistical models mainly focus on semantics of the language which are suitable for large vocabulary tasks where as structural methods focus on syntax which models small vocabulary tasks. A statistical language model based on Trigram for Tamil language with medium vocabulary of 5000 words has been built. Though statistical parsing gives better performance through tri-gram probabilities and large vocabulary size, it has some disadvantages like focus on semantics rather than syntax, lack of support in free ordering of words and long term relationship. To overcome the disadvantages a structural component is to be incorporated in statistical language models which leads to the implementation of hybrid language models. This paper has attempted to build phrase structured hybrid language model which resolves above mentioned disadvantages. In the development of hybrid language model, new part of speech tag set for Tamil language has been developed with more than 500 tags which have the wider coverage. A phrase structured Treebank has been developed with 326 Tamil sentences which covers more than 5000 words. A hybrid language model has been trained with the phrase structured Treebank using immediate head parsing technique. Lexicalized and statistical parser which employs this hybrid language model and immediate head parsing technique gives better results than pure grammar and trigram based model.

Impacts of Project-Overload on Innovation inside Organizations: Agent-Based Modeling

Market competition and a desire to gain advantages on globalized market, drives companies towards innovation efforts. Project overload is an unpleasant phenomenon, which is happening for employees inside those organizations trying to make the most efficient use of their resources to be innovative. But what are the impacts of project overload on organization-s innovation capabilities? Advanced engineering teams (AE) inside a major heavy equipment manufacturer are suffering from project overload in their quest for innovation. In this paper, Agent-based modeling (ABM) is used to examine the current reality of the company context, and of the AE team, where the opportunities and challenges for reducing the risk of project overload and moving towards innovation were identified. Project overload is more likely to stifle innovation and creativity inside teams. On the other hand, motivations on proper challenging goals are more likely to help individual to alleviate the negative aspects of low level of project overload.

Novel Structural Insights of Glutamate Racemase from Mycobacterium tuberculosis through Modeling and Docking Studies

An alarming emergence of multidrug-resistant strains of the tuberculosis pathogen Mycobacterium tuberculosis and continuing high worldwide incidence of tuberculosis has invigorated the search for novel drug targets. The enzyme glutamate racemase (MurI) in bacteria catalyzes the stereoconversion of L-glutamate to D-glutamate which is a component of the peptidoglycan cell wall of the bacterium. The inhibitors targeted against MurI from several bacterial species have been patented and are advocated as promising antibacterial agents. However there are none available against MurI from Mycobacterium tuberculosis, due to the lack of its threedimensional structure. This work accomplished two major objectives. First, the tertiary structure of MtMurI was deduced computationally through homology modeling using the templates from bacterial homologues. It is speculated that like in other Gram-positive bacteria, MtMurI exists as a dimer and many of the protein interactions at the dimer interface are also conserved. Second, potent candidate inhibitors against MtMurI were identified through docking against already known inhibitors in other organisms.

Study on the Derivatization Process Using N-O-bis-(trimethylsilyl)-trifluoroacetamide, N-(tert-butyldimethylsilyl)-N-methyltrifluoroace tamide, Trimethylsilydiazomethane for the Determination of Fecal Sterols by Gas Chromatography-Mass Spectrometry

Fecal sterol has been proposed as a chemical indicator of human fecal pollution even when fecal coliform populations have diminished due to water chlorination or toxic effects of industrial effluents. This paper describes an improved derivatization procedure for simultaneous determination of four fecal sterols including coprostanol, epicholestanol, cholesterol and cholestanol using gas chromatography-mass spectrometry (GC-MS), via optimization study on silylation procedures using N-O-bis (trimethylsilyl)-trifluoroacetamide (BSTFA), and N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA), which lead to the formation of trimethylsilyl (TMS) and tert-butyldimethylsilyl (TBS) derivatives, respectively. Two derivatization processes of injection-port derivatization and water bath derivatization (60 oC, 1h) were inspected and compared. Furthermore, the methylation procedure at 25 oC for 2h with trimethylsilydiazomethane (TMSD) for fecal sterols analysis was also studied. It was found that most of TMS derivatives demonstrated the highest sensitivities, followed by methylated derivatives. For BSTFA or MTBSTFA derivatization processes, the simple injection-port derivatization process could achieve the same efficiency as that in the tedious water bath derivatization procedure.

Finite Element Study of a DfD Beam-Column Connection

Design for Disassembly (DfD) aims to reuse the structural components instead of demolition followed by recycling of the demolition debris. This concept preserves the invested embodied energy of materials, thus reducing inputs of new embodied energy during materials reprocessing or remanufacturing. Both analytical and experimental research on a proposed DfD beam-column connection for use in residential apartments is currently investigated at the National University of Singapore in collaboration with the Housing and Development Board of Singapore. The present study reports on the results of a numerical analysis of the proposed connection utilizing finite element analysis. The numerical model was calibrated and validated by comparison against experimental results. Results of a parametric study will also be presented and discussed.

Micropolar Fluids Effects on the Dynamic Characteristics of Four-lobe Journal Bearing

Dynamic characteristics of a four-lobe journal bearing of micropolar fluids are presented. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and solving it by using finite difference technique. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.