Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid

Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.

Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping

This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.

Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

A Practical and Efficient Evaluation Function for 3D Model Based Vehicle Matching

3D model-based vehicle matching provides a new way for vehicle recognition, localization and tracking. Its key is to construct an evaluation function, also called fitness function, to measure the degree of vehicle matching. The existing fitness functions often poorly perform when the clutter and occlusion exist in traffic scenarios. In this paper, we present a practical and efficient fitness function. Unlike the existing evaluation functions, the proposed fitness function is to study the vehicle matching problem from both local and global perspectives, which exploits the pixel gradient information as well as the silhouette information. In view of the discrepancy between 3D vehicle model and real vehicle, a weighting strategy is introduced to differently treat the fitting of the model’s wireframes. Additionally, a normalization operation for the model’s projection is performed to improve the accuracy of the matching. Experimental results on real traffic videos reveal that the proposed fitness function is efficient and robust to the cluttered background and partial occlusion.

Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks

The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.

Gray Level Image Encryption

The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption.

Optimal Placement of Piezoelectric Actuators on Plate Structures for Active Vibration Control Using Modified Control Matrix and Singular Value Decomposition Approach

The present work deals with the optimal placement of piezoelectric actuators on a thin plate using Modified Control Matrix and Singular Value Decomposition (MCSVD) approach. The problem has been formulated using the finite element method using ten piezoelectric actuators on simply supported plate to suppress first six modes. The sizes of ten actuators are combined to outline one actuator by adding the ten columns of control matrix to form a column matrix. The singular value of column control matrix is considered as the fitness function and optimal positions of the actuators are obtained by maximizing it with GA. Vibration suppression has been studied for simply supported plate with piezoelectric patches in optimal positions using Linear Quadratic regulator) scheme. It is observed that MCSVD approach has given the position of patches adjacent to each-other, symmetric to the centre axis and given greater vibration suppression than other previously published results on SVD. 

Optimization of Electrospinning Parameter by Employing Genetic Algorithm in order to Produce Desired Nanofiber Diameter

A numerical simulation of optimization all of electrospinning processing parameters to obtain smallest nanofiber diameter have been performed by employing genetic algorithm (GA). Fitness function in genetic algorithm methods, which was different for each parameter, was determined by simulation approach based on the Reneker’s model. Moreover, others genetic algorithm parameter, namely length of population, crossover and mutation were applied to get the optimum electrospinning processing parameters. In addition, minimum fiber diameter, 32 nm, was achieved from a simulation by applied the optimum parameters of electrospinning. This finding may be useful for process control and prediction of electrospun fiber production. In this paper, it is also compared between predicted parameters with some experimental results.

A Dual Fitness Function Genetic Algorithm: Application on Deterministic Identical Machine Scheduling

In this paper a genetic algorithm (GA) with dual-fitness function is proposed and applied to solve the deterministic identical machine scheduling problem. The mating fitness function value was used to determine the mating for chromosomes, while the selection fitness function value was used to determine their survivals. The performance of this algorithm was tested on deterministic identical machine scheduling using simulated data. The results obtained from the proposed GA were compared with classical GA and integer programming (IP). Results showed that dual-fitness function GA outperformed the classical single-fitness function GA with statistical significance for large problems and was competitive to IP, particularly when large size problems were used.

An Advanced Nelder Mead Simplex Method for Clustering of Gene Expression Data

The DNA microarray technology concurrently monitors the expression levels of thousands of genes during significant biological processes and across the related samples. The better understanding of functional genomics is obtained by extracting the patterns hidden in gene expression data. It is handled by clustering which reveals natural structures and identify interesting patterns in the underlying data. In the proposed work clustering gene expression data is done through an Advanced Nelder Mead (ANM) algorithm. Nelder Mead (NM) method is a method designed for optimization process. In Nelder Mead method, the vertices of a triangle are considered as the solutions. Many operations are performed on this triangle to obtain a better result. In the proposed work, the operations like reflection and expansion is eliminated and a new operation called spread-out is introduced. The spread-out operation will increase the global search area and thus provides a better result on optimization. The spread-out operation will give three points and the best among these three points will be used to replace the worst point. The experiment results are analyzed with optimization benchmark test functions and gene expression benchmark datasets. The results show that ANM outperforms NM in both benchmarks.

Analysis of Genotype Size for an Evolvable Hardware System

The evolution of logic circuits, which falls under the heading of evolvable hardware, is carried out by evolutionary algorithms. These algorithms are able to automatically configure reconfigurable devices. One of main difficulties in developing evolvable hardware with the ability to design functional electrical circuits is to choose the most favourable EA features such as fitness function, chromosome representations, population size, genetic operators and individual selection. Until now several researchers from the evolvable hardware community have used and tuned these parameters and various rules on how to select the value of a particular parameter have been proposed. However, to date, no one has presented a study regarding the size of the chromosome representation (circuit layout) to be used as a platform for the evolution in order to increase the evolvability, reduce the number of generations and optimize the digital logic circuits through reducing the number of logic gates. In this paper this topic has been thoroughly investigated and the optimal parameters for these EA features have been proposed. The evolution of logic circuits has been carried out by an extrinsic evolvable hardware system which uses (1+λ) evolution strategy as the core of the evolution.

Optimal Supplementary Damping Controller Design for TCSC Employing RCGA

Optimal supplementary damping controller design for Thyristor Controlled Series Compensator (TCSC) is presented in this paper. For the proposed controller design, a multi-objective fitness function consisting of both damping factors and real part of system electromachanical eigenvalue is used and Real- Coded Genetic Algorithm (RCGA) is employed for the optimal supplementary controller parameters. The performance of the designed supplementary TCSC-based damping controller is tested on a weakly connected power system with different disturbances and loading conditions with parameter variations. Simulation results are presented and compared with a conventional power system stabilizer and also with the TCSC-based supplementary controller when the controller parameters are not optimized to show the effectiveness and robustness of the proposed approach over a wide range of loading conditions and disturbances.

Evolutionary Approach for Automated Discovery of Censored Production Rules

In the recent past, there has been an increasing interest in applying evolutionary methods to Knowledge Discovery in Databases (KDD) and a number of successful applications of Genetic Algorithms (GA) and Genetic Programming (GP) to KDD have been demonstrated. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski & Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations, in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the 'If P Then D' part of the CPR expresses important information, while the Unless C part acts only as a switch and changes the polarity of D to ~D. This paper presents a classification algorithm based on evolutionary approach that discovers comprehensible rules with exceptions in the form of CPRs. The proposed approach has flexible chromosome encoding, where each chromosome corresponds to a CPR. Appropriate genetic operators are suggested and a fitness function is proposed that incorporates the basic constraints on CPRs. Experimental results are presented to demonstrate the performance of the proposed algorithm.

A New Approach to Solve Blasius Equation using Parameter Identification of Nonlinear Functions based on the Bees Algorithm (BA)

In this paper, a new approach is introduced to solve Blasius equation using parameter identification of a nonlinear function which is used as approximation function. Bees Algorithm (BA) is applied in order to find the adjustable parameters of approximation function regarding minimizing a fitness function including these parameters (i.e. adjustable parameters). These parameters are determined how the approximation function has to satisfy the boundary conditions. In order to demonstrate the presented method, the obtained results are compared with another numerical method. Present method can be easily extended to solve a wide range of problems.

How Social Network Structure Affects the Dynamics of Evolution of Cooperation?

The existence of many biological systems, especially human societies, is based on cooperative behavior [1, 2]. If natural selection favors selfish individuals, then what mechanism is at work that we see so many cooperative behaviors? One answer is the effect of network structure. On a graph, cooperators can evolve by forming network bunches [2, 3, 4]. In a research, Ohtsuki et al used the idea of iterated prisoners- dilemma on a graph to model an evolutionary game. They showed that the average number of neighbors plays an important role in determining whether cooperation is the ESS of the system or not [3]. In this paper, we are going to study the dynamics of evolution of cooperation in a social network. We show that during evolution, the ratio of cooperators among individuals with fewer neighbors to cooperators among other individuals is greater than unity. The extent to which the fitness function depends on the payoff of the game determines this ratio.

Enhanced GA-Fuzzy OPF under both Normal and Contingent Operation States

The genetic algorithm (GA) based solution techniques are found suitable for optimization because of their ability of simultaneous multidimensional search. Many GA-variants have been tried in the past to solve optimal power flow (OPF), one of the nonlinear problems of electric power system. The issues like convergence speed and accuracy of the optimal solution obtained after number of generations using GA techniques and handling system constraints in OPF are subjects of discussion. The results obtained for GA-Fuzzy OPF on various power systems have shown faster convergence and lesser generation costs as compared to other approaches. This paper presents an enhanced GA-Fuzzy OPF (EGAOPF) using penalty factors to handle line flow constraints and load bus voltage limits for both normal network and contingency case with congestion. In addition to crossover and mutation rate adaptation scheme that adapts crossover and mutation probabilities for each generation based on fitness values of previous generations, a block swap operator is also incorporated in proposed EGA-OPF. The line flow limits and load bus voltage magnitude limits are handled by incorporating line overflow and load voltage penalty factors respectively in each chromosome fitness function. The effects of different penalty factors settings are also analyzed under contingent state.

Evaluation of Edge Configuration in Medical Echo Images Using Genetic Algorithms

Edge detection is usually the first step in medical image processing. However, the difficulty increases when a conventional kernel-based edge detector is applied to ultrasonic images with a textural pattern and speckle noise. We designed an adaptive diffusion filter to remove speckle noise while preserving the initial edges detected by using a Sobel edge detector. We also propose a genetic algorithm for edge selection to form complete boundaries of the detected entities. We designed two fitness functions to evaluate whether a criterion with a complex edge configuration can render a better result than a simple criterion such as the strength of gradient. The edges obtained by using a complex fitness function are thicker and more fragmented than those obtained by using a simple fitness function, suggesting that a complex edge selecting scheme is not necessary for good edge detection in medical ultrasonic images; instead, a proper noise-smoothing filter is the key.

Synthesis of Digital Circuits with Genetic Algorithms: A Fractional-Order Approach

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.

Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features

The recognition of human faces, especially those with different orientations is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation invariant face recognition using Log-Polar Transform and Discrete Cosine Transform combined features. The rotation invariant feature extraction for a given face image involves applying the logpolar transform to eliminate the rotation effect and to produce a row shifted log-polar image. The discrete cosine transform is then applied to eliminate the row shift effect and to generate the low-dimensional feature vector. A PSO-based feature selection algorithm is utilized to search the feature vector space for the optimal feature subset. Evolution is driven by a fitness function defined in terms of maximizing the between-class separation (scatter index). Experimental results, based on the ORL face database using testing data sets for images with different orientations; show that the proposed system outperforms other face recognition methods. The overall recognition rate for the rotated test images being 97%, demonstrating that the extracted feature vector is an effective rotation invariant feature set with minimal set of selected features.