Abstract: The aim of this study is to investigate the fundamental
science/technology related to novel S-glass fiber reinforced polyether-
ketone-ketone (GF/PEKK) composites and to gain insight into
bonding strength and failure mechanisms. Different manufacturing
techniques to make this high-temperature pre-impregnated composite
(prepreg) were conducted i.e. mechanical deposition, electrostatic
powder deposition, and dry powder prepregging techniques.
Generally, the results of this investigation showed that it was difficult
to control the distribution of the resin powder evenly on the both sides
of the fibers within a specific percentage. Most successful approach
was by using a dry powder prepregging where the fibers were coated
evenly with an adhesive that served as a temporary binder to hold the
resin powder in place onto the glass fiber fabric.
Abstract: While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.
Abstract: The structures obtained with the use of sandwich
technologies combine low weight with high energy absorbing
capacity and load carrying capacity. Hence, there is a growing and
markedly interest in the use of sandwiches with aluminum foam core
because of very good properties such as flexural rigidity and energy
absorption capability. In the current investigation, the static threepoint
bending tests were carried out on the sandwiches with
aluminum foam core and glass fiber reinforced polymer (GFRP)
skins at different values of support span distances aiming the analyses
of their flexural performance. The influence of the core thickness and
the GFRP skin type was reported in terms of peak load and energy
absorption capacity. For this purpose, the skins with two different
types of fabrics which have same thickness value and the aluminum
foam core with two different thicknesses were bonded with a
commercial polyurethane based flexible adhesive in order to combine
the composite sandwich panels. The main results of the bending tests
are: force-displacement curves, peak force values, absorbed energy,
collapse mechanisms and the effect of the support span length and
core thickness. The results of the experimental study showed that the
sandwich with the skins made of S-Glass Woven fabrics and with the
thicker foam core presented higher mechanical values such as load
carrying and energy absorption capacities. The increment of the
support span distance generated the decrease of the mechanical
values for each type of panels, as expected, because of the inverse
proportion between the force and span length. The most common
failure types of the sandwiches are debonding of the lower skin and
the core shear. The obtained results have particular importance for
applications that require lightweight structures with a high capacity
of energy dissipation, such as the transport industry (automotive,
aerospace, shipbuilding and marine industry), where the problems of
collision and crash have increased in the last years.
Abstract: The material selection in the design of the sandwich
structures is very crucial aspect because of the positive or negative
influences of the base materials to the mechanical properties of the
entire panel. In the literature, it was presented that the selection of the
skin and core materials plays very important role on the behavior of
the sandwich. Beside this, the use of the correct adhesive can make
the whole structure to show better mechanical results and behavior.
In the present work, the static three-point bending tests were
performed on the sandwiches having an aluminum alloy foam core,
the skins made of three different types of fabrics and two different
commercial adhesives (flexible polyurethane and toughened epoxy
based) at different values of support span distances by aiming the
analyses of their flexural performance in terms of absorbed energy,
peak force values and collapse mechanisms. The main results of the
flexural loading are: force-displacement curves obtained after the
bending tests, peak force and absorbed energy values, collapse
mechanisms and adhesion quality. The experimental results presented
that the sandwiches with epoxy based toughened adhesive and the
skins made of S-Glass Woven fabrics indicated the best adhesion
quality and mechanical properties. The sandwiches with toughened
adhesive exhibited higher peak force and energy absorption values
compared to the sandwiches with flexible adhesive. The use of these
sandwich structures can lead to a weight reduction of the transport
vehicles, providing an adequate structural strength under operating
conditions.