Abstract: This paper examines the impact of social media on knowledge work. It discloses and highlights which specific aspects, areas and tasks of knowledge work can be improved by the use of social media. Moreover, the study includes a survey about higher education students’ viewpoints in regard to the use of social media as a means to enhance knowledge work and knowledge sharing. The analysis has been conducted based both on empirical data and on discussions about the sources dealing with knowledge work and how it can be enhanced by using social media. The results show that social media can improve knowledge work, knowledge building and maintenance tasks in which communication, information sharing and collaboration play a vital role. Additionally, by using social media, personal, collaborative and supplementary work activities can be enhanced. Based on the results of the study, we suggest how knowledge work can be enhanced when using the contemporary information and communications technologies (ICTs) of the 21st century and recommend future directions towards improving knowledge work.
Abstract: Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.
Abstract: The world is expected to experience growth in the number of ageing population, and this will bring about high cost of providing care for these valuable citizens. In addition, many of these live with chronic diseases that come with old age. Providing adequate care in the face of rising costs and dwindling personnel can be challenging. However, advances in technologies and emergence of the Internet of Things are providing a way to address these challenges while improving care giving. This study proposes the integration of recommendation systems into homecare to provide real-time recommendations for effective management of people receiving care at home and those living with chronic diseases. Using the simplified Training Logic Concept, stakeholders and requirements were identified. Specific requirements were gathered from people living with cancer. The solution designed has two components namely home and community, to enhance recommendations sharing for effective care giving. The community component of the design was implemented with the development of a mobile app called Recommendations Sharing Community for Aged and Chronically Ill People (ReSCAP). This component has illustrated the possibility of real-time recommendations, improved recommendations sharing among care receivers and between a physician and care receivers. Full implementation will increase access to health data for better care decision making.
Abstract: The aim of this study is to investigate the fundamental
science/technology related to novel S-glass fiber reinforced polyether-
ketone-ketone (GF/PEKK) composites and to gain insight into
bonding strength and failure mechanisms. Different manufacturing
techniques to make this high-temperature pre-impregnated composite
(prepreg) were conducted i.e. mechanical deposition, electrostatic
powder deposition, and dry powder prepregging techniques.
Generally, the results of this investigation showed that it was difficult
to control the distribution of the resin powder evenly on the both sides
of the fibers within a specific percentage. Most successful approach
was by using a dry powder prepregging where the fibers were coated
evenly with an adhesive that served as a temporary binder to hold the
resin powder in place onto the glass fiber fabric.
Abstract: The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film.
Abstract: Business education has been criticized for being too theoretical and distant from business life. Different types of experiential learning environments ranging from manual role-play to computer simulations and enterprise resource planning (ERP) systems have been used to introduce the realistic and practical experience into business learning. Each of these learning environments approaches business learning from a different perspective. The implementations tend to be individual exercises supplementing the traditional courses. We suggest combining them into a business skills laboratory resembling an actual workplace. In this paper, we present a concrete implementation of an ERP-supported business learning environment that is used throughout the first year undergraduate business curriculum. We validate the implementation by evaluating the learning outcomes through the different domains of Bloom’s taxonomy. We use the role-play oriented practice enterprise model as a comparison group. Our findings indicate that using the ERP simulation improves the poor and average students’ lower-level cognitive learning. On the affective domain, the ERP-simulation appears to enhance motivation to learn as well as perceived acquisition of practical hands-on skills.
Abstract: This paper systematically investigates the timedependent
health outcomes for office staff during computer work
using the developed mathematical model. The model describes timedependent
health outcomes in multiple body regions associated with
computer usage. The association is explicitly presented with a doseresponse
relationship which is parametrized by body region
parameters. Using the developed model we perform extensive
investigations of the health outcomes statically and dynamically. We
compare the risk body regions and provide various severity rankings
of the discomfort rate changes with respect to computer-related
workload dynamically for the study population. Application of the
developed model reveals a wide range of findings. Such broad
spectrum of investigations in a single report literature is lacking.
Based upon the model analysis, it is discovered that the highest
average severity level of the discomfort exists in neck, shoulder, eyes,
shoulder joint/upper arm, upper back, low back and head etc. The
biggest weekly changes of discomfort rates are in eyes, neck, head,
shoulder, shoulder joint/upper arm and upper back etc. The fastest
discomfort rate is found in neck, followed by shoulder, eyes, head,
shoulder joint/upper arm and upper back etc. Most of our findings are
consistent with the literature, which demonstrates that the developed
model and results are applicable and valuable and can be utilized to
assess correlation between the amount of computer-related workload
and health risk.
Abstract: Pressure wave velocity in a hydraulic system was
determined using piezo pressure sensors without removing fluid from
the system. The measurements were carried out in a low pressure
range (0.2 – 6 bar) and the results were compared with the results of
other studies. This method is not as accurate as measurement with
separate measurement equipment, but the fluid is in the actual
machine the whole time and the effect of air is taken into
consideration if air is present in the system. The amount of air is
estimated by calculations and comparisons between other studies.
This measurement equipment can also be installed in an existing
machine and it can be programmed so that it measures in real time.
Thus, it could be used e.g. to control dampers.
Abstract: Tablet computers and Multifunctional Hardcopy Devices (MHDs) are common devices in daily life. Though, many scientific studies have not been published. The tablet computers are straightforward to use whereas the MHDs are comparatively difficult to use. Thus, to assist different levels of users, we propose combining these two devices to achieve straightforward intelligent user interface (UI) and versatile What You See Is What You Get (WYSIWYG) document management and production. Our approach to this issue is to design an intelligent user dependent UI for a MHD applying a tablet computer. Furthermore, we propose hardware interconnection and versatile intelligent software between these two devices. In this study, we first provide a state-of-the-art survey on MHDs and tablet computers, and their interconnections. Secondly we provide a comparative UI survey on two state-of-the-art MHDs with a proposal of a novel UI for the MHDs using Jakob Nielsen-s Ten Usability Heuristics Evaluation.