An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading

The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum alloy foam core, the skins made of three different types of fabrics and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances by aiming the analyses of their flexural performance in terms of absorbed energy, peak force values and collapse mechanisms. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force and absorbed energy values, collapse mechanisms and adhesion quality. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.