Features of Following the Customs and Traditions in Turkestan in the Late XIXth and Early XXth Centuries

This article discusses the customs and traditions in Turkestan in the late XIXth and early XXth centuries. Having a long history, Turkestan is well-known as the birthplace of many nations and nationalities. The name of Turkestan is also given to it for a reason - the land of the Turkic peoples who inhabited Central Asia and united under together. Currently, nations and nationalities of the Turkestan region formed their own sovereign states, and every year they prove their country names in the world community. Political, economic importance of Turkestan, which became the gold wire between Asia and Europe was always very high. So systematically various aggressive actions were made by several great powers. As a result of expansionary policy of colonization of the Russian Empire - the Turkestan has appeared.

A New Technique for Progressive ECG Transmission using Discrete Radon Transform

The aim of this paper is to present a new method which can be used for progressive transmission of electrocardiogram (ECG). The idea consists in transforming any ECG signal to an image, containing one beat in each row. In the first step, the beats are synchronized in order to reduce the high frequencies due to inter-beat transitions. The obtained image is then transformed using a discrete version of Radon Transform (DRT). Hence, transmitting the ECG, leads to transmit the most significant energy of the transformed image in Radon domain. For decoding purpose, the receptor needs to use the inverse Radon Transform as well as the two synchronization frames. The presented protocol can be adapted for lossy to lossless compression systems. In lossy mode we show that the compression ratio can be multiplied by an average factor of 2 for an acceptable quality of reconstructed signal. These results have been obtained on real signals from MIT database.

Drying of Papaya (Carica papaya L.) Using a Microwave-vacuum Dryer

In present work, drying characteristics of fresh papaya (Carica papaya L.) was studied to understand the dehydration process and its behavior. Drying experiments were carried out by a laboratory scaled microwave-vacuum oven. The parameters affecting drying characteristics including operating modes (continuous, pulsed), microwave power (400 and 800 W), and vacuum pressure (20, 30, and 40 cmHg) were investigated. For pulsed mode, two levels of power-off time (60 and 120 s) were used while the power-on time was fixed at 60 s and the vacuum pressure was fixed at 40 cmHg. For both operating modes, the effects of drying conditions on drying time, drying rate, and effective diffusivity were investigated. The results showed high microwave power, high vacuum, and pulsed mode of 60 s-on/60 s-off favored drying rate as shown by the shorten drying time and increased effective diffusivity. The drying characteristics were then described by Page-s model, which showed a good agreement with experimental data.

Online Computing System for Cctuple-Precision Computation with Fortran

Computations with higher than the IEEE 754 standard double-precision (about 16 significant digits) are required recently. Although there are available software routines in Fortran and C for high-precision computation, users are required to implement such routines in their own computers with detailed knowledges about them. We have constructed an user-friendly online system for octupleprecision computation. In our Web system users with no knowledges about high-precision computation can easily perform octupleprecision computations, by choosing mathematical functions with argument(s) inputted, by writing simple mathematical expression(s) or by uploading C program(s). In this paper we enhance the Web system above by adding the facility of uploading Fortran programs, which have been widely used in scientific computing. To this end we construct converter routines in two stages.

A Systems Approach to Gene Ranking from DNA Microarray Data of Cervical Cancer

In this paper we present a method for gene ranking from DNA microarray data. More precisely, we calculate the correlation networks, which are unweighted and undirected graphs, from microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to progression of the tumor. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth and, hence, indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.

Learning to Recognize Faces by Local Feature Design and Selection

Studies in neuroscience suggest that both global and local feature information are crucial for perception and recognition of faces. It is widely believed that local feature is less sensitive to variations caused by illumination, expression and illumination. In this paper, we target at designing and learning local features for face recognition. We designed three types of local features. They are semi-global feature, local patch feature and tangent shape feature. The designing of semi-global feature aims at taking advantage of global-like feature and meanwhile avoiding suppressing AdaBoost algorithm in boosting weak classifies established from small local patches. The designing of local patch feature targets at automatically selecting discriminative features, and is thus different with traditional ways, in which local patches are usually selected manually to cover the salient facial components. Also, shape feature is considered in this paper for frontal view face recognition. These features are selected and combined under the framework of boosting algorithm and cascade structure. The experimental results demonstrate that the proposed approach outperforms the standard eigenface method and Bayesian method. Moreover, the selected local features and observations in the experiments are enlightening to researches in local feature design in face recognition.

Thermo Mechanical Design and Analysis of PEM Fuel cell Plate

Fuel and oxidant gas delivery plate, or fuel cell plate, is a key component of a Proton Exchange Membrane (PEM) fuel cell. To manufacture low-cost and high performance fuel cell plates, advanced computer modeling and finite element structure analysis are used as virtual prototyping tools for the optimization of the plates at the early design stage. The present study examines thermal stress analysis of the fuel cell plates that are produced using a patented, low-cost fuel cell plate production technique based on screen-printing. Design optimization is applied to minimize the maximum stress within the plate, subject to strain constraint with both geometry and material parameters as design variables. The study reveals the characteristics of the printed plates, and provides guidelines for the structure and material design of the fuel cell plate.

Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method

This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.

Thermodynamic Analysis of Activated Carbon- CO2 based Adsorption Cooling Cycles

Heat powered solid sorption is a feasible alternative to electrical vapor compression refrigeration systems. In this paper, activated carbon (powder type Maxsorb and fiber type ACF-A10)- CO2 based adsorption cooling cycles are studied using the pressuretemperature- concentration (P-T-W) diagram. The specific cooling effect (SCE) and the coefficient of performance (COP) of these two cooling systems are simulated for the driving heat source temperatures ranging from 30 ºC to 90 ºC in terms of different cooling load temperatures with a cooling source temperature of 25 ºC. It is found from the present analysis that Maxsorb-CO2 couple shows higher cooling capacity and COP. The maximum COPs of Maxsorb-CO2 and ACF(A10)-CO2 based cooling systems are found to be 0.15 and 0.083, respectively. The main innovative feature of this cooling cycle is the ability to utilize low temperature waste heat or solar energy using CO2 as the refrigerant, which is one of the best alternative for applications where flammability and toxicity are not allowed.

Process-based Business Transformation through Services Computing

Business transformation initiatives are required by any organization to jump from its normal mode of operation to the one that is suitable for the change in the environment such as competitive pressures, regulatory requirements, changes in labor market, etc., or internal such as changes in strategy/vision, changes in the capability, change in the management, etc. Recent advances in information technology in automating the business processes have the potential to transform an organization to provide it with a sustained competitive advantage. Process constitutes the skeleton of a business. Thus, for a business to exist and compete well, it is essential for the skeleton to be robust and agile. This paper details “transformation" from a business perspective, methodologies to bring about an effective transformation, process-based transformation, and the role of services computing in this. Further, it details the benefits that could be achieved through services computing.

New Wavelet Indices to Assess Muscle Fatigue during Dynamic Contractions

The purpose of this study was to evaluate and compare new indices based on the discrete wavelet transform with another spectral parameters proposed in the literature as mean average voltage, median frequency and ratios between spectral moments applied to estimate acute exercise-induced changes in power output, i.e., to assess peripheral muscle fatigue during a dynamic fatiguing protocol. 15 trained subjects performed 5 sets consisting of 10 leg press, with 2 minutes rest between sets. Surface electromyography was recorded from vastus medialis (VM) muscle. Several surface electromyographic parameters were compared to detect peripheral muscle fatigue. These were: mean average voltage (MAV), median spectral frequency (Fmed), Dimitrov spectral index of muscle fatigue (FInsm5), as well as other five parameters obtained from the discrete wavelet transform (DWT) as ratios between different scales. The new wavelet indices achieved the best results in Pearson correlation coefficients with power output changes during acute dynamic contractions. Their regressions were significantly different from MAV and Fmed. On the other hand, they showed the highest robustness in presence of additive white gaussian noise for different signal to noise ratios (SNRs). Therefore, peripheral impairments assessed by sEMG wavelet indices may be a relevant factor involved in the loss of power output after dynamic high-loading fatiguing task.

Improved Segmentation of Speckled Images Using an Arithmetic-to-Geometric Mean Ratio Kernel

In this work, we improve a previously developed segmentation scheme aimed at extracting edge information from speckled images using a maximum likelihood edge detector. The scheme was based on finding a threshold for the probability density function of a new kernel defined as the arithmetic mean-to-geometric mean ratio field over a circular neighborhood set and, in a general context, is founded on a likelihood random field model (LRFM). The segmentation algorithm was applied to discriminated speckle areas obtained using simple elliptic discriminant functions based on measures of the signal-to-noise ratio with fractional order moments. A rigorous stochastic analysis was used to derive an exact expression for the cumulative density function of the probability density function of the random field. Based on this, an accurate probability of error was derived and the performance of the scheme was analysed. The improved segmentation scheme performed well for both simulated and real images and showed superior results to those previously obtained using the original LRFM scheme and standard edge detection methods. In particular, the false alarm probability was markedly lower than that of the original LRFM method with oversegmentation artifacts virtually eliminated. The importance of this work lies in the development of a stochastic-based segmentation, allowing an accurate quantification of the probability of false detection. Non visual quantification and misclassification in medical ultrasound speckled images is relatively new and is of interest to clinicians.

Causal Factors Affecting on Trustworthiness and Success of the National Press Council of Thailand in Regulating Professional Ethics in Views of Newspaper Journalists

The objectives of this research were 1) to study the opinions of newspaper journalists about their trustworthiness in the National Press Council of Thailand (NPCT) and the NPCT-s success in regulating the professional ethics; and 2) to study the differences among mean vectors of the variables of trustworthiness in the NPCT and opinions on the NPCT-s success in regulating professional ethics among samples working at different work positions and from different affiliation of newspaper organizations. The results showed that 1) Interaction effects between the variables of work positions and affiliation were not statistically significant at the confidence level of 0.05. 2) There was a statistically significant difference (p

Larval Occurrence and Climatic Factors Affecting DHF Incidence in Samui Islands, Thailand

This study investigated the number of Aedes larvae, the key breeding sites of Aedes sp., and the relationship between climatic factors and the incidence of DHF in Samui Islands. We conducted our questionnaire and larval surveys from randomly selected 105 households in Samui Islands in July-September 2006. Pearson-s correlation coefficient was used to explore the primary association between the DHF incidence and all climatic factors. Multiple stepwise regression technique was then used to fit the statistical model. The results showed that the positive indoor containers were small jars, cement tanks, and plastic tanks. The positive outdoor containers were small jars, cement tanks, plastic tanks, used cans, tires, plastic bottles, discarded objects, pot saucers, plant pots, and areca husks. All Ae. albopictus larval indices (i.e., CI, HI, and BI) were higher than Ae. aegypti larval indices in this area. These larval indices were higher than WHO standard. This indicated a high risk of DHF transmission at Samui Islands. The multiple stepwise regression model was y = –288.80 + 11.024xmean temp. The mean temperature was positively associated with the DHF incidence in this area.

Anisotropic Constitutive Model and its Application in Simulation of Thermal Shock Wave Propagation for Cylinder Shell Composite

In this paper, a plane-strain orthotropic elasto-plastic dynamic constitutive model is established, and with this constitutive model, the thermal shock wave induced by intense pulsed X-ray radiation in cylinder shell composite is simulated by the finite element code, then the properties of thermal shock wave propagation are discussed. The results show that the thermal shock wave exhibit different shapes under the radiation of soft and hard X-ray, and while the composite is radiated along different principal axes, great differences exist in some aspects, such as attenuation of the peak stress value, spallation and so on.

The Effect of Corporate Diversification on the Profitability of the Financial Services Sector in Nigeria

This paper examines the effect of corporate diversification on the profitability of the Financial services sector in Nigeria. The study relied on historic accounting data generated from financial (annual) reports and accounts of sampled banks between the period 1998 and 2007 (a ten-year period). A regression equation was formulated, in line with previous studies to shed light on the effect of corporate diversification on the profitability of the Financial services sector in Nigeria. The results of the regression analysis revealed that diversification impacts strongly on banks profitability. Conclusively the paper produces strong evidence to assert that diversification impacts positively and significantly on banks profitability because among other things such diversified banks can pool their internally generated funds and allocate them properly.

Analysis of Web User Identification Methods

Web usage mining has become a popular research area, as a huge amount of data is available online. These data can be used for several purposes, such as web personalization, web structure enhancement, web navigation prediction etc. However, the raw log files are not directly usable; they have to be preprocessed in order to transform them into a suitable format for different data mining tasks. One of the key issues in the preprocessing phase is to identify web users. Identifying users based on web log files is not a straightforward problem, thus various methods have been developed. There are several difficulties that have to be overcome, such as client side caching, changing and shared IP addresses and so on. This paper presents three different methods for identifying web users. Two of them are the most commonly used methods in web log mining systems, whereas the third on is our novel approach that uses a complex cookie-based method to identify web users. Furthermore we also take steps towards identifying the individuals behind the impersonal web users. To demonstrate the efficiency of the new method we developed an implementation called Web Activity Tracking (WAT) system that aims at a more precise distinction of web users based on log data. We present some statistical analysis created by the WAT on real data about the behavior of the Hungarian web users and a comprehensive analysis and comparison of the three methods

On the Flow of a Third Grade Viscoelastic Fluid in an Orthogonal Rheometer

The flow of a third grade fluid in an orthogonal rheometer is studied. We employ the admissible velocity field proposed in [5]. We solve the problem and obtain the velocity field as well as the components for the Cauchy tensor. We compare the results with those from [9]. Some diagrams concerning the velocity and Cauchy stress components profiles are presented for different values of material constants and compared with the corresponding values for a linear viscous fluid.

An Agent Oriented Architecture to Supply Integration in ERP Systems

One of the most important aspects expected from ERP systems is to integrate various operations existing in administrative, financial, commercial, human resources, and production departments of the consumer organization. Also, it is often needed to integrate the new ERP system with the organization legacy systems when implementing the ERP package in the organization. Without relying on an appropriate software architecture to realize the required integration, ERP implementation processes become error prone and time consuming; in some cases, the ERP implementation may even encounters serious risks. In this paper, we propose a new architecture that is based on the agent oriented vision and supplies the integration expected from ERP systems using several independent but cooperator agents. Besides integration which is the main issue of this paper, the presented architecture will address some aspects of intelligence and learning capabilities existing in ERP systems

Buckling Optimization of Radially-Graded, Thin-Walled, Long Cylinders under External Pressure

This paper presents a generalized formulation for the problem of buckling optimization of anisotropic, radially graded, thin-walled, long cylinders subject to external hydrostatic pressure. The main structure to be analyzed is built of multi-angle fibrous laminated composite lay-ups having different volume fractions of the constituent materials within the individual plies. This yield to a piecewise grading of the material in the radial direction; that is the physical and mechanical properties of the composite material are allowed to vary radially. The objective function is measured by maximizing the critical buckling pressure while preserving the total structural mass at a constant value equals to that of a baseline reference design. In the selection of the significant optimization variables, the fiber volume fractions adjoin the standard design variables including fiber orientation angles and ply thicknesses. The mathematical formulation employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately as well as the inclusion of the coupling stiffness terms is presented. The proposed model deals with dimensionless quantities in order to be valid for thin shells having arbitrary thickness-to-radius ratios. The critical buckling pressure level curves augmented with the mass equality constraint are given for several types of cylinders showing the functional dependence of the constrained objective function on the selected design variables. It was shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.