Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of back propagation of back propagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this caseiodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Fuzzy Inference System Based Unhealthy Region Classification in Plant Leaf Image

In addition to environmental parameters like rain, temperature diseases on crop is a major factor which affects production quality & quantity of crop yield. Hence disease management is a key issue in agriculture. For the management of disease, it needs to be detected at early stage. So, treat it properly & control spread of the disease. Now a day, it is possible to use the images of diseased leaf to detect the type of disease by using image processing techniques. This can be achieved by extracting features from the images which can be further used with classification algorithms or content based image retrieval systems. In this paper, color image is used to extract the features such as mean and standard deviation after the process of region cropping. The selected features are taken from the cropped image with different image size samples. Then, the extracted features are taken in to the account for classification using Fuzzy Inference System (FIS).

Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives

The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture

Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nanocutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.

Potential of Safflower (Carthamus tinctorius L.) for Phytoremedation of Soils Contaminated with Heavy Metals

A field study was conducted to evaluate the efficacy of safflower plant for phytoremediation of contaminated soils. The experiment was performed on an agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. Field experiments with randomized complete block design with five treatments (control, compost amendments added at 20 and 40 t/daa, and vermicompost amendments added at 20 and 40 t/daa) were carried out. The quality of safflower seeds and oil (heavy metals and fatty acid composition) were determined. Tested organic amendments significantly influenced the chemical composition of safflower seeds and oil. The compost and vermicompost treatments significantly reduced heavy metals concentration in safflower seeds and oils, but the effect differed among them. Addition of vermicompost and compost leads to an increase in the content of palmitic acid and linoleic acid, and a decrease in the stearic and oleic acids compared with the control. A significant increase in the quantity of saturated acids was observed in the variants with 20 t/daa of compost and 20 t/daa of vermicompost (9.1 and 8.9% relative to the control). Safflower is a plant which is tolerant to heavy metals and can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of seeds to oil and using the obtained oil for nutritional purposes will greatly reduce the cost of phytoremediation.

Potential of Lavender (Lavandula vera L.) for Phytoremediation of Soils Contaminated with Heavy Metals

A field study was conducted to evaluate the efficacy of lavender for phytoremediation of contaminated soils. The experiment was performed on an agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The concentrations of Pb, Zn and Cd in lavender (roots, stems, leaves and inflorescences) and in the essential oils of lavender were determined. Lavender is a plant which is tolerant to heavy metals and can be grown on contaminated soils, and which can be referred to the hyperaccumulators of lead and the accumulators of cadmium and zinc, and can be successfully used in the phytoremediation of heavy metal contaminated soils. Favorable is also the fact that heavy metals do not influence the development of the lavender, as well as on the quality and quantity of the essential oil. The possibility of further industrial processing will make lavender economically interesting crops for farmers of phytoextraction technology.

Social Network Analysis & Information Disclosure: A Case Study

The advent of social networking technologies has been met with mixed reactions in academic and corporate circles around the world. This study explored the influence of social network in current era, the relation being maintained between the Social networking site and its user by the extent of use, benefits and latest technologies. The study followed a descriptive research design wherein a questionnaire was used as the main research tool. The data collected was analyzed using SPSS 16. Data was gathered from 1205 users and analyzed in accordance with the objectives of the study. The analysis of the results seem to suggest that the majority of users were mainly using Facebook, despite of concerns raised about the disclosure of personal information on social network sites, users continue to disclose huge quantity of personal information, they find that reading privacy policy is time consuming and changes made can result into improper settings.

Bibliometric Analysis of the Impact of Funding on Scientific Development of Researchers

Every year, a considerable amount of money is being invested on research, mainly in the form of funding allocated to universities and research institutes. To better distribute the available funds and to set the most proper R&D investment strategies for the future, evaluation of the productivity of the funded researchers and the impact of such funding is crucial. In this paper, using the data on 15 years of journal publications of the NSERC (Natural Sciences and Engineering research Council of Canada) funded researchers and by means of bibliometric analysis, the scientific development of the funded researchers and their scientific collaboration patterns will be investigated in the period of 1996-2010. According to the results it seems that there is a positive relation between the average level of funding and quantity and quality of the scientific output. In addition, whenever funding allocated to the researchers has increased, the number of co-authors per paper has also augmented. Hence, the increase in the level of funding may enable researchers to get involved in larger projects and/or scientific teams and increase their scientific output respectively.

Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling

In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation. 

The Effect of Nose Radius on Cutting Force and Temperature during Machining Titanium Alloy (Ti-6Al-4V)

This paper presents a study the effect of nose radius (Rz-mm) on cutting force components and temperatures during the machining simulation in an orthogonal cutting process for titanium alloy (Ti-6Al-4V). The cutting process was performed at various nose radiuses (Rz-mm) while the depth of cut (d-mm), feed rate (fmm/ tooth) and cutting speed (vc-m/ min) were remained constant. The main cutting force (Fc), feed cutting force (Ft) and temperatures were estimated by using finite element modeling (FEM) through ABAQUS/EXPLICIT software and the simulation was developed the two-dimension via an orthogonal cutting process during machining titanium alloy (Ti-6Al-4V). The results led to the conclusion that the nose radius (Rz-mm) has affected directly on the cutting force components. However, temperature gave no indication or has no significant relation with nose radius during machining titanium alloy (Ti-6Al-4V). Hence, any increase or decrease in the nose radius (Rzmm) during machining operation led to effect on the cutting forces and thus it will be effective on surface finish, quality, and quantity of products.

Apoptosis Pathway Targeted by Thymoquinone in MCF7 Breast Cancer Cell Line

Array-based gene expression analysis is a powerful tool to profile expression of genes and to generate information on therapeutic effects of new anti-cancer compounds. Anti-apoptotic effect of thymoquinone was studied in MCF7 breast cancer cell line using gene expression profiling with cDNA microarray. The purity and yield of RNA samples were determined using RNeasyPlus Mini kit. The Agilent RNA 6000 NanoLabChip kit evaluated the quantity of the RNA samples. AffinityScript RT oligo-dT promoter primer was used to generate cDNA strands. T7 RNA polymerase was used to convert cDNA to cRNA. The cRNA samples and human universal reference RNA were labelled with Cy-3-CTP and Cy-5-CTP, respectively. Feature Extraction and GeneSpring softwares analysed the data. The single experiment analysis revealed involvement of 64 pathways with up-regulated genes and 78 pathways with downregulated genes. The MAPK and p38-MAPK pathways were inhibited due to the up-regulation of PTPRR gene. The inhibition of p38-MAPK suggested up-regulation of TGF-ß pathway. Inhibition of p38-MAPK caused up-regulation of TP53 and down-regulation of Bcl2 genes indicating involvement of intrinsic apoptotic pathway. Down-regulation of CARD16 gene as an adaptor molecule regulated CASP1 and suggested necrosis-like programmed cell death and involvement of caspase in apoptosis. Furthermore, down-regulation of GPCR, EGF-EGFR signalling pathways suggested reduction of ER. Involvement of AhR pathway which control cytochrome P450 and glucuronidation pathways showed metabolism of Thymoquinone. The findings showed differential expression of several genes in apoptosis pathways with thymoquinone treatment in estrogen receptor-positive breast cancer cells.

A Case Study on Management of Coal Seam Gas By-Product Water

The rate of natural gas dissociation from the Coal Matrix depends on depressurization of reservoir through removing of the cleat water from the coal seam. These waters are similar to brine and aged of very long years. For improving the connectivity through fracking /fracturing, high pressure liquids are pumped off inside the coal body. A significant quantity of accumulated water, a combined mixture of cleat water and fracking fluids (back flow water) is pumped out through gas well. In Queensland, Australia Coal Seam Gas (CSG) industry is in booming state and estimated of 30,000 wells would be active for CSG production forecasting life span of 30 years. Integrated water management along with water softening programs is practiced for subsequent treatment and later on discharge to nearby surface water catchment. Water treatment is an important part of the CSG industry. A case study on a CSG site and review on the test results are discussed for assessing the Standards & Practices for management of CSG by-product water and their subsequent disposal activities. This study was directed toward (i) water management and softening process in Spring Gully CSG field, (ii) Comparative analysis on experimental study and standards and (iii) Disposal of the treated water. This study also aimed for alternative usages and their impact on vegetation, living species as well as long term effects.

Effect of Marginal Quality Groundwater on Yield of Cotton Crop and Soil Salinity Status

In this paper, effect of marginal quality groundwater on yield of cotton crop and soil salinity was studied. In this connection, three irrigation treatments each with four replications were applied. These treatments were i) use of canal water (T1), ii) use of marginal quality groundwater from tubewell (T2), and iii) conjunctive use by mixing with the ratio of 1:1 of canal water and marginal quality tubewell water (T3). Water was applied to the crop cultivated in Kharif season 2011; its quantity has been measured using cut-throat flume. Total 11 watering each of 50 mm depth have been applied from 20th April to 20th July, 2011. Further, irrigations were stopped due to monsoon rainfall up to crop harvesting. Maximum crop yield (seed cotton) was observed under T1 which was 1,517 kg/ha followed by T3 (mixed canal and tubewell water) having 1009 kg/ha and T2 i.e. marginal quality groundwater having 709 kg/ha. This concludes that crop yield in T2 and T3 in comparison to T1was reduced by about 53 and 30% respectively. It has been observed that yield of cotton crop is below potential limit for three treatments due to unexpected rainfall at the time of full flowering season; thus the yield was adversely affected. However, salt deposition in soil profiles was not observed that is due to leaching effect of heavy rainfall occurred during monsoon season.

Phelipanche ramosa (L. - Pomel) Control in Field Tomato Crop

The tomato is a very important crop, whose cultivation in the Mediterranean basin is severely affected by the phytoparasitic weed Phelipanche ramosa. The semiarid regions of the world are considered the main areas where this parasitic weed is established causing heavy infestation as it is able to produce high numbers of seeds (up to 500,000 per plant), which remain viable for extended period (more than 20 years). In this paper the results obtained from eleven treatments in order to control this parasitic weed including chemical, agronomic, biological and biotechnological methods compared with the untreated test under two plowing depths (30 and 50 cm) are reported. The split-plot design with 3 replicates was adopted. In 2014 a trial was performed in Foggia province (southern Italy) on processing tomato (cv Docet) grown in the field infested by Phelipanche ramosa. Tomato seedlings were transplant on May 5, on a clay-loam soil. During the growing cycle of the tomato crop, at 56-78 and 92 days after transplantation, the number of parasitic shoots emerged in each plot was detected. At tomato harvesting, on August 18, the major quantity-quality yield parameters were determined (marketable yield, mean weight, dry matter, pH, soluble solids and color of fruits). All data were subjected to analysis of variance (ANOVA) and the means were compared by Tukey's test. Each treatment studied did not provide complete control against Phelipanche ramosa. However, among the different methods tested, some of them which Fusarium, gliphosate, radicon biostimulant and Red Setter tomato cv (improved genotypes obtained by Tilling technology) under deeper plowing (50 cm depth) proved to mitigate the virulence of the Phelipanche ramose attacks. It is assumed that these effects can be improved combining some of these treatments each other, especially for a gradual and continuing reduction of the “seed bank” of the parasite in the soil.

Economic and Environmental Benefits of the Best Available Technique Application in a Food Processing Plant

A cleaner production project was implemented in a bakery. The project is based on the substitution of the best available technique for an obsolete leaven production technology. The new technology enables production of durable, high-quality leavens. Moreover, 25% of flour as the original raw material can be replaced by pastry from the previous day production which has not been sold. That pastry was previously disposed in a waste incineration plant. Besides the environmental benefits resulting from less waste, lower consumption of energy, reduction of sewage waters quantity and floury dustiness there are also significant economic benefits. Payback period of investment was calculated with help of static method of financial analysis about 2.6 years, using dynamic method 3.5 years and an internal rate of return more than 29%. The supposed annual average profit after taxationin the second year of operation was incompliance with the real profit.

Bio-Heat Transfer in Various Transcutaneous Stimulation Models

This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.

Incessant Collapse of Buildings in Nigeria: The Possible Role of the Use of Inappropriate Cement Grade/Strength Class

The use of low quality concrete has been identified as one of the main causes of the incessant collapse of buildings in Nigeria. Emphasis has been on the use of poor quality aggregates, poor workmanship and the use of lean concrete mix with low cement quantity as the reasons for the low quality of concrete used for building construction in Nigeria. Surveys conducted revealed that in the construction of most privately owned buildings where concrete trial mixes and concrete compressive strength quality assurance tests are not conducted, concretes used for building constructions are produced using the 1:2:4 mix ratio irrespective of the cement grade/strength class. In this paper, the possible role of the use of inappropriate cement grade/strength class as a cause of the incessant collapse of building in Nigeria is investigated. Investigation revealed that the compressive strengths of concrete cubes produced with Portland-limestone cement grade 32.5 using 1:2:4 and 1:1.5:3 mix ratios are less than the 25MPa and 30MPa cube strengths generally recommended for building superstructures and foundations respectively. Conversely, the compressive strengths of concrete cubes produced with Portland-limestone cement grade 42.5 using 1:2:4 and 1:1.5:3 mix ratios exceed the 25MPa and 30MPa generally recommended for building superstructures and foundations respectively. Thus, it can be concluded that the use of inappropriate cement grade (Portland-limestone cement grade 32.5), particularly for the construction of building foundations is a potential cause of the incessant collapse of buildings in Nigeria. It is recommended that the Standards Organisation of Nigeria should embark on creating awareness for Nigerians, particularly, the home owners and the roadside craftsmen that Portland-limestone cement grade 32.5 should not be used for the construction of building load-carrying members, particularly, building foundations in order to reduce the incessant incidence of collapsed building.

Targeting the Life Cycle Stages of the Diamond Back Moth (Plutella xylostella) with Three Different Parasitoid Wasps

A continuous time model of the interaction between crop insect pests and naturally beneficial pest enemies is created using a set of simultaneous, non-linear, ordinary differential equations incorporating natural death rates based on the Weibull distribution. The crop pest is present in all its life-cycle stages of: egg, larva, pupa and adult. The beneficial insects, parasitoid wasps, may be present in either or all parasitized: eggs, larva and pupa. Population modelling is used to estimate the quantity of the natural pest enemies that should be introduced into the pest infested environment to suppress the pest population density to an economically acceptable level within a prescribed number of days. The results obtained illustrate the effect of different combinations of parasitoid wasps, using the Pascal distribution to estimate their success in parasitizing different pest developmental stages, to deliver pest control to a sustainable level. Effective control, within a prescribed number of days, is established by the deployment of two or all three species of wasps, which partially destroy pest: egg, larvae and pupae stages. The selected scenarios demonstrate effective sustainable control of the pest in less than thirty days.

Ecotoxicological Safety of Wastewater Treated with Lignocellulosic Adsorbents

Portugal is an important wine and olive oil producer, activities which generate a high quantity of residues commonly called grape stalks and olive cake, respectively. In this work grape stalks and olive cake were used as lignocellulosic adsorbents for wastewater containing lead treatment. To attain a better knowledge of the factors that could influence the quality of the treated wastewater, a chemical characterization of the materials used in the treatment was done. To access the ecotoxicological safety of the treated wastewater, several tests were performed. The results of the toxicity test show that the samples leachate has a mild effect on the living models tested. The tests performed in lemna and bacteria were the most sensible to toxicity effects of the samples. The results obtained in this work evidenced the importance of use of simple and fast toxicity tests to predict impacts in the environment.

The Relationship between Inventory Management and Profitability: A Comparative Research on Turkish Firms Operated in Weaving Industry, Eatables Industry, Wholesale and Retail Industry

Working capital is identified as firm’s all current assets. Inventories which are one of the working capital elements are very important among current assets for firms. Because, profitability is an indicator for firms’ financial success is provided with minimum cost and optimum inventory quantity. So in this study, it is investigated as comparatively that the effect of inventory management on the profitability of Turkish firms which operated in weaving industry, eatables industry, wholesale and retail industry in between 2003 – 2012 years. Research data consist of profitability ratios and inventory turnovers ratio calculated by using balance sheets and income statements of firms which operated in Borsa Istanbul (BIST). In this research, the relationship between inventories and profitability is investigated by using SPSS-20 software with regression and correlation analysis. The results achieved from three industry departments which exist in study interpreted as comparatively. Accordingly, it is determined that there is a positive relationship between inventory management and profitability in eatables industry. However, it was founded that there is no relationship between inventory management and profitability in weaving industry and wholesale and retail industry.