Typical Day Prediction Model for Output Power and Energy Efficiency of a Grid-Connected Solar Photovoltaic System

A novel typical day prediction model have been built and validated by the measured data of a grid-connected solar photovoltaic (PV) system in Macau. Unlike conventional statistical method used by previous study on PV systems which get results by averaging nearby continuous points, the present typical day statistical method obtain the value at every minute in a typical day by averaging discontinuous points at the same minute in different days. This typical day statistical method based on discontinuous point averaging makes it possible for us to obtain the Gaussian shape dynamical distributions for solar irradiance and output power in a yearly or monthly typical day. Based on the yearly typical day statistical analysis results, the maximum possible accumulated output energy in a year with on site climate conditions and the corresponding optimal PV system running time are obtained. Periodic Gaussian shape prediction models for solar irradiance, output energy and system energy efficiency have been built and their coefficients have been determined based on the yearly, maximum and minimum monthly typical day Gaussian distribution parameters, which are obtained from iterations for minimum Root Mean Squared Deviation (RMSD). With the present model, the dynamical effects due to time difference in a day are kept and the day to day uncertainty due to weather changing are smoothed but still included. The periodic Gaussian shape correlations for solar irradiance, output power and system energy efficiency have been compared favorably with data of the PV system in Macau and proved to be an improvement than previous models.

A Novel Prostate Segmentation Algorithm in TRUS Images

Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.

Nonlinear Model Predictive Swing-Up and Stabilizing Sliding Mode Controllers

In this paper, a nonlinear model predictive swing-up and stabilizing sliding controller is proposed for an inverted pendulum-cart system. In the swing up phase, the nonlinear model predictive control is formulated as a nonlinear programming problem with energy based objective function. By solving this problem at each sampling instant, a sequence of control inputs that optimize the nonlinear objective function subject to various constraints over a finite horizon are obtained. Then, this control drives the pendulum to a predefined neighborhood of the upper equilibrium point, at where sliding mode based model predictive control is used to stabilize the systems with the specified constraints. It is shown by the simulations that, due to the way of formulating the problem, short horizon lengths are sufficient for attaining the swing up goal.

Towards Model-Driven Communications

In modern distributed software systems, the issue of communication among composing parts represents a critical point, but the idea of extending conventional programming languages with general purpose communication constructs seems difficult to realize. As a consequence, there is a (growing) gap between the abstraction level required by distributed applications and the concepts provided by platforms that enable communication. This work intends to discuss how the Model Driven Software Development approach can be considered as a mature technology to generate in automatic way the schematic part of applications related to communication, by providing at the same time high level specialized languages useful in all the phases of software production. To achieve the goal, a stack of languages (meta-meta¬models) has been introduced in order to describe – at different levels of abstraction – the collaborative behavior of generic entities in terms of communication actions related to a taxonomy of messages. Finally, the generation of platforms for communication is viewed as a form of specification of language semantics, that provides executable models of applications together with model-checking supports and effective runtime environments.

Reciprocating Compressor Optimum Design and Manufacturing with Respect to Performance, Reliability and Cost

Reciprocating compressors are flexible to handle wide capacity and condition swings, offer a very efficient method of compressing almost any gas mixture in wide range of pressure, can generate high head independent of density, and have numerous applications and wide power ratings. These make them vital component in various units of industrial plants. In this paper optimum reciprocating compressor configuration regarding interstage pressures, low suction pressure, non-lubricated cylinder, speed of machine, capacity control system, compressor valve, lubrication system, piston rod coating, cylinder liner material, barring device, pressure drops, rod load, pin reversal, discharge temperature, cylinder coolant system, performance, flow, coupling, special tools, condition monitoring (including vibration, thermal and rod drop monitoring), commercial points, delivery and acoustic conditions are presented.

Compiler-Based Architecture for Context Aware Frameworks

Computers are being integrated in the various aspects of human every day life in different shapes and abilities. This fact has intensified a requirement for the software development technologies which is ability to be: 1) portable, 2) adaptable, and 3) simple to develop. This problem is also known as the Pervasive Computing Problem (PCP) which can be implemented in different ways, each has its own pros and cons and Context Oriented Programming (COP) is one of the methods to address the PCP. In this paper a design for a COP framework, a context aware framework, is presented which has eliminated weak points of a previous design based on interpreter languages, while introducing the compiler languages power in implementing these frameworks. The key point of this improvement is combining COP and Dependency Injection (DI) techniques. Both old and new frameworks are analyzed to show advantages and disadvantages. Finally a simulation of both designs is proposed to indicating that the practical results agree with the theoretical analysis while the new design runs almost 8 times faster.

An Evaluation of Carbon Dioxide Emissions Trading among Enterprises -The Tokyo Cap and Trade Program-

This study aims to propose three evaluation methods to evaluate the Tokyo Cap and Trade Program when emissions trading is performed virtually among enterprises, focusing on carbon dioxide (CO2), which is the only emitted greenhouse gas that tends to increase. The first method clarifies the optimum reduction rate for the highest cost benefit, the second discusses emissions trading among enterprises through market trading, and the third verifies long-term emissions trading during the term of the plan (2010-2019), checking the validity of emissions trading partly using Geographic Information Systems (GIS). The findings of this study can be summarized in the following three points. 1. Since the total cost benefit is the greatest at a 44% reduction rate, it is possible to set it more highly than that of the Tokyo Cap and Trade Program to get more total cost benefit. 2. At a 44% reduction rate, among 320 enterprises, 8 purchasing enterprises and 245 sales enterprises gain profits from emissions trading, and 67 enterprises perform voluntary reduction without conducting emissions trading. Therefore, to further promote emissions trading, it is necessary to increase the sales volumes of emissions trading in addition to sales enterprises by increasing the number of purchasing enterprises. 3. Compared to short-term emissions trading, there are few enterprises which benefit in each year through the long-term emissions trading of the Tokyo Cap and Trade Program. Only 81 enterprises at the most can gain profits from emissions trading in FY 2019. Therefore, by setting the reduction rate more highly, it is necessary to increase the number of enterprises that participate in emissions trading and benefit from the restraint of CO2 emissions.

Transmission Performance of Millimeter Wave Multiband OFDM UWB Wireless Signal over Fiber System

Performance of millimeter-wave (mm-wave) multiband orthogonal frequency division multiplexing (MB-OFDM) ultrawideband (UWB) signal generation using frequency quadrupling technique and transmission over fiber is experimentally investigated. The frequency quadrupling is achived by using only one Mach- Zehnder modulator (MZM) that is biased at maximum transmission (MATB) point. At the output, a frequency quadrupling signal is obtained then sent to a second MZM. This MZM is used for MBOFDM UWB signal modulation. In this work, we demonstrate 30- GHz mm-wave wireless that carries three-bands OFDM UWB signals, and error vector magnitude (EVM) is used to analyze the transmission quality. It is found that our proposed technique leads to an improvement of 3.5 dB in EVM at 40% of local oscillator (LO) modulation with comparison to the technique using two cascaded MZMs biased at minimum transmission (MITB) point.

The Studying of The “Бақыт”(“Happiness”) Concept In The Kazakh Language

The given article deals with the usage of the concept in many spheres of science, including its place in the Kazakh linguistics One of such concepts is the role of the “бақыт” (“happiness”) concept in the Kazakh outlook. The work tells us about its studying. The data about studying of the “happiness” concept in the sphere of philosophy, psychology, cognitive linguistics, lingo cultural study, logics, psycho-linguistic are given in this work. Particularly dwelling at length on the studying level of the concept in the sphere of cognitive linguistics, analysis have been made pertaining linguist point of views. It was pointed out that the concept of “happiness” hasn’t been studied yet in the Kazakh linguistics and it is necessary to find out the meaning of the language units related to this concept, i.e. blessings, proverbs, sayings and phrasiological units.

Managing Meat Safety at South African Abattoirs

The importance of ensuring safe meat handling and processing practices has been demonstrated in global reports on food safety scares and related illness and deaths. This necessitated stricter meat safety control strategies. Today, many countries have regulated towards preventative and systematic control over safe meat processing at abattoirs utilizing the Hazard Analysis Critical Control Point (HACCP) principles. HACCP systems have been reported as effective in managing food safety risks, if correctly implemented. South Africa has regulated the Hygiene Management System (HMS) based on HACCP principles applicable to abattoirs. Regulators utilise the Hygiene Assessment System (HAS) to audit compliance at abattoirs. These systems were benchmarked from the United Kingdom (UK). Little research has been done them since inception as of 2004. This paper presents a review of the two systems, its implementation and comparison with HACCP. Recommendations are made for future research to demonstrate the utility of the HMS and HAS in assuring safe meat to consumers.

Active Contours with Prior Corner Detection

Deformable active contours are widely used in computer vision and image processing applications for image segmentation, especially in biomedical image analysis. The active contour or “snake" deforms towards a target object by controlling the internal, image and constraint forces. However, if the contour initialized with a lesser number of control points, there is a high probability of surpassing the sharp corners of the object during deformation of the contour. In this paper, a new technique is proposed to construct the initial contour by incorporating prior knowledge of significant corners of the object detected using the Harris operator. This new reconstructed contour begins to deform, by attracting the snake towards the targeted object, without missing the corners. Experimental results with several synthetic images show the ability of the new technique to deal with sharp corners with a high accuracy than traditional methods.

Three-dimensional Finite Element Analysis of the Front Cross Member of the Peugeot 405

Undoubtedly, chassis is one of the most important parts of a vehicle. Chassis that today are produced for vehicles are made up of four parts. These parts are jointed together by screwing. Transverse parts are called cross member. This study reviews the stress generated by cyclic laboratory loads in front cross member of Peugeot 405. In this paper the finite element method is used to simulate the welding process and to determine the physical response of the spot-welded joints. Analysis is done by the Abaqus software. The Stresses generated in cross member structure are generally classified into two groups: The stresses remained in form of residual stresses after welding process and the mechanical stress generated by cyclic load. Accordingly the total stress must be obtained by determining residual stress and mechanical stress separately and then sum them according to the superposition principle. In order to improve accuracy, material properties including physical, thermal and mechanical properties were supposed to be temperature-dependent. Simulation shows that maximum Von Misses stresses are located at special points. The model results are then compared to the experimental results which are reported by producing factory and good agreement is observed.

Fundamental Concepts of Theory of Constraints: An Emerging Philosophy

Dr Eliyahu Goldratt has done the pioneering work in the development of Theory of Constraints. Since then, many more researchers around the globe are working to enhance this body of knowledge. In this paper, an attempt has been made to compile the salient features of this theory from the work done by Goldratt and other researchers. This paper will provide a good starting point to the potential researchers interested to work in Theory of Constraints. The paper will also help the practicing managers by clarifying their concepts on the theory and will facilitate its successful implementation in their working areas.

Study on the Evaluation of the Chaotic Cipher System Using the Improved Volterra Filters and the RBFN Mapping

In this paper, we propose a chaotic cipher system consisting of Improved Volterra Filters and the mapping that is created from the actual voice by using Radial Basis Function Network. In order to achieve a practical system, the system supposes to use the digital communication line, such as the Internet, to maintain the parameter matching between the transmitter and receiver sides. Therefore, in order to withstand the attack from outside, it is necessary that complicate the internal state and improve the sensitivity coefficient. In this paper, we validate the robustness of proposed method from three perspectives of "Chaotic properties", "Randomness", "Coefficient sensitivity".

Quadrature Formula for Sampled Functions

This paper deals with efficient quadrature formulas involving functions that are observed only at fixed sampling points. The approach that we develop is derived from efficient continuous quadrature formulas, such as Gauss-Legendre or Clenshaw-Curtis quadrature. We select nodes at sampling positions that are as close as possible to those of the associated classical quadrature and we update quadrature weights accordingly. We supply the theoretical quadrature error formula for this new approach. We show on examples the potential gain of this approach.

Ranking DMUs by Ideal PPS in Data Envelopment Analysis

An original DEA model is to evaluate each DMU optimistically, but the interval DEA Model proposed in this paper has been formulated to obtain an efficiency interval consisting of Evaluations from both the optimistic and the pessimistic view points. DMUs are improved so that their lower bounds become so large as to attain the maximum Value one. The points obtained by this method are called ideal points. Ideal PPS is calculated by ideal of efficiency DMUs. The purpose of this paper is to rank DMUs by this ideal PPS. Finally we extend the efficiency interval of a DMU under variable RTS technology.