A Comprehensive Survey and Comparative Analysis of Black Hole Attack in Mobile Ad Hoc Network

A Mobile Ad-hoc Network (MANET) is a self managing network consists of versatile nodes that are capable of communicating with each other without having any fixed infrastructure. These nodes may be routers and/or hosts. Due to this dynamic nature of the network, routing protocols are vulnerable to various kinds of attacks. The black hole attack is one of the conspicuous security threats in MANETs. As the route discovery process is obligatory and customary, attackers make use of this loophole to get success in their motives to destruct the network. In Black hole attack the packet is redirected to a node that actually does not exist in the network. Many researchers have proposed different techniques to detect and prevent this type of attack. In this paper, we have analyzed various routing protocols in this context. Further we have shown a critical comparison among various protocols. We have shown various routing metrics are required proper and significant analysis of the protocol.

Providing Emotional Support to Children under Long-Term Health Treatments

Patients under health treatments that involve long  stays at a hospital or health center (e.g. cancer, organ transplants and  severe burns), tend to get bored or depressed because of the lack of  social interaction with family and friends. Such a situation also  affects the evolution and effectiveness of their treatments. In many  cases, the solution to this problem involves extra challenges, since  many patients need to rest quietly (or remain in bed) to their being  contagious. Considering the weak health condition in which usually  are these kinds, keeping them motivated and quiet represents an  important challenge for nurses and caregivers. This article presents a  mobile ubiquitous game called MagicRace, which allows hospitalized  kinds to interact socially with one another without putting to risk  their sensitive health conditions. The game does not require a  communication infrastructure at the hospital, but instead, it uses a  mobile ad hoc network composed of the handheld devices used by  the kids to play. The usability and performance of this application  was tested in two different sessions. The preliminary results show  that users experienced positive feelings from this experience.  

An Anonymity-Based Secure On-Demand Routing for Mobile Ad Hoc Networks

Privacy and Security have emerged as an important research issue in Mobile Ad Hoc Networks (MANET) due to its unique nature such as scarce of resources and absence of centralized authority. There are number of protocols have been proposed to provide privacy and security for data communication in an adverse environment, but those protocols are compromised in many ways by the attackers. The concept of anonymity (in terms of unlinkability and unobservability) and pseudonymity has been introduced in this paper to ensure privacy and security. In this paper, a Secure Onion Throat (SOT) protocol is proposed to provide complete anonymity in an adverse environment. The SOT protocol is designed based on the combination of group signature and onion routing with ID-based encryption for route discovery. The security analysis demonstrates the performance of SOT protocol against all categories of attacks. The simulation results ensure the necessity and importance of the proposed SOT protocol in achieving such anonymity.

Efficient Aggregate Signature Algorithm and Its Application in MANET

An aggregate signature scheme can aggregate n signatures on n distinct messages from n distinct signers into a single signature. Thus, n verification equations can be reduced to one. So the aggregate signature adapts to Mobile Ad hoc Network (MANET). In this paper, we propose an efficient ID-based aggregate signature scheme with constant pairing computations. Compared with the existing ID-based aggregate signature scheme, this scheme greatly improves the efficiency of signature communication and verification. In addition, in this work, we apply our ID-based aggregate sig- nature to authenticated routing protocol to present a secure routing scheme. Our scheme not only provides sound authentication and a secure routing protocol in ad hoc networks, but also meets the nature of MANET.

Mobile Ad Hoc Networks and It’s Routing Protocols

A mobile ad hoc network (MANET) is a self configuring network, without any centralized control. The topology of this network is not always defined. The main objective of this paper is to introduce the fundamental concepts of MANETs to the researchers and practitioners, who are involved in the work in the area of modeling and simulation of MANETs. This paper begins with an overview of mobile ad hoc networks. Then it proceeds with the overview of routing protocols used in the MANETS, their properties and simulation methods. A brief tabular comparison between the routing protocols is also given in this paper considering different routing protocol parameters. This paper introduces a new routing scheme developed by the use of evolutionary algorithms (EA) and analytical hierarchy process (AHP) which will be used for getting the optimized output of MANET. In this paper cryptographic technique, ceaser cipher is also employed for making the optimized route secure.

Performance Comparison and Analysis of Table-Driven and On-Demand Routing Protocols for Mobile Ad-hoc Networks

Mobile ad hoc network is a collection of mobile nodes communicating through wireless channels without any existing network infrastructure or centralized administration. Because of the limited transmission range of wireless network interfaces, multiple "hops" may be needed to exchange data across the network. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. The primary goal of such an ad hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction should be done with a minimum of overhead and bandwidth consumption. This paper examines two routing protocols for mobile ad hoc networks– the Destination Sequenced Distance Vector (DSDV), the table- driven protocol and the Ad hoc On- Demand Distance Vector routing (AODV), an On –Demand protocol and evaluates both protocols based on packet delivery fraction, normalized routing load, average delay and throughput while varying number of nodes, speed and pause time.

The Effects of Speed on the Performance of Routing Protocols in Mobile Ad-hoc Networks

Mobile ad hoc network is a collection of mobile nodes communicating through wireless channels without any existing network infrastructure or centralized administration. Because of the limited transmission range of wireless network interfaces, multiple "hops" may be needed to exchange data across the network. Consequently, many routing algorithms have come into existence to satisfy the needs of communications in such networks. Researchers have conducted many simulations comparing the performance of these routing protocols under various conditions and constraints. One question that arises is whether speed of nodes affects the relative performance of routing protocols being studied. This paper addresses the question by simulating two routing protocols AODV and DSDV. Protocols were simulated using the ns-2 and were compared in terms of packet delivery fraction, normalized routing load and average delay, while varying number of nodes, and speed.

A Preemptive Link State Spanning Tree Source Routing Scheme for Opportunistic Data Forwarding in MANET

Opportunistic Data Forwarding (ODF) has drawn much attention in mobile adhoc networking research in recent years. The effectiveness of ODF in MANET depends on a suitable routing protocol which provides a powerful source routing services. PLSR is featured by source routing, loop free and small routing overhead. The update messages in PLSR are integrated into a tree structure and no need to time stamp routing updates which reduces the routing overhead.

An Energy Reverse AODV Routing Protocol in Ad Hoc Mobile Networks

In this paper we present a full performance analysis of an energy conserving routing protocol in mobile ad hoc network, named ER-AODV (Energy Reverse Ad-hoc On-demand Distance Vector routing). ER-AODV is a reactive routing protocol based on a policy which combines two mechanisms used in the basic AODV protocol. AODV and most of the on demand ad hoc routing protocols use single route reply along reverse path. Rapid change of topology causes that the route reply could not arrive to the source node, i.e. after a source node sends several route request messages, the node obtains a reply message, and this increases in power consumption. To avoid these problems, we propose a mechanism which tries multiple route replies. The second mechanism proposes a new adaptive approach which seeks to incorporate the metric "residual energy " in the process route selection, Indeed the residual energy of mobile nodes were considered when making routing decisions. The results of simulation show that protocol ER-AODV answers a better energy conservation.

Improving Survivability in Wireless Ad Hoc Network

Topological changes in mobile ad hoc networks frequently render routing paths unusable. Such recurrent path failures have detrimental effects on quality of service. A suitable technique for eliminating this problem is to use multiple backup paths between the source and the destination in the network. This paper proposes an effective and efficient protocol for backup and disjoint path set in ad hoc wireless network. This protocol converges to a highly reliable path set very fast with no message exchange overhead. The paths selection according to this algorithm is beneficial for mobile ad hoc networks, since it produce a set of backup paths with more high reliability. Simulation experiments are conducted to evaluate the performance of our algorithm in terms of route numbers in the path set and its reliability. In order to acquire link reliability estimates, we use link expiration time (LET) between two nodes.

Trust Enhanced Dynamic Source Routing Protocol for Adhoc Networks

Nodes in mobile Ad Hoc Network (MANET) do not rely on a central infrastructure but relay packets originated by other nodes. Mobile ad hoc networks can work properly only if the participating nodes collaborate in routing and forwarding. For individual nodes it might be advantageous not to collaborate, though. In this conceptual paper we propose a new approach based on relationship among the nodes which makes them to cooperate in an Adhoc environment. The trust unit is used to calculate the trust values of each node in the network. The calculated trust values are being used by the relationship estimator to determine the relationship status of nodes. The proposed enhanced protocol was compared with the standard DSR protocol and the results are analyzed using the network simulator-2.

Delay and Packet Loss Analysis for Handovers between MANETs and NEMO Networks

MANEMO is the integration of Network Mobility (NEMO) and Mobile Ad Hoc Network (MANET). A MANEMO node has an interface to both a MANET and NEMO network, and therefore should choose the optimal interface for packet delivery, however such a handover between interfaces will introduce packet loss. We define the steps necessary for a MANEMO handover, using Mobile IP and NEMO to signal the new binding to the relevant Home Agent(s). The handover steps aim to minimize the packet loss by avoiding waiting for Duplicate Address Detection and Neighbour Unreachability Detection. We present expressions for handover delay and packet loss, and then use numerical examples to evaluate a MANEMO handover. The analysis shows how the packet loss depends on level of nesting within NEMO, the delay between Home Agents and the load on the MANET, and hence can be used to developing optimal MANEMO handover algorithms.

Analysis of Detecting Wormhole Attack in Wireless Networks

In multi hop wireless systems, such as ad hoc and sensor networks, mobile ad hoc network applications are deployed, security emerges as a central requirement. A particularly devastating attack is known as the wormhole attack, where two or more malicious colluding nodes create a higher level virtual tunnel in the network, which is employed to transport packets between the tunnel end points. These tunnels emulate shorter links in the network. In which adversary records transmitted packets at one location in the network, tunnels them to another location, and retransmits them into the network. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In this paper, we analyze wormhole attack nature in ad hoc and sensor networks and existing methods of the defending mechanism to detect wormhole attacks without require any specialized hardware. This analysis able to provide in establishing a method to reduce the rate of refresh time and the response time to become more faster.

Performance Evaluation of Routing Protocols for High Density Ad Hoc Networks Based on Energy Consumption by GlomoSim Simulator

Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR), Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing (LAR1).Our evaluation is based on energy consumption in mobile ad hoc networks. The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.

Local Algorithm for Establishing a Virtual Backbone in 3D Ad Hoc Network

Due to the limited lifetime of the nodes in ad hoc and sensor networks, energy efficiency needs to be an important design consideration in any routing algorithm. It is known that by employing a virtual backbone in a wireless network, the efficiency of any routing scheme for the network can be improved. One common design for routing protocols in mobile ad hoc networks is to use positioning information; we use the node-s geometric locations to introduce an algorithm that can construct the virtual backbone structure locally in 3D environment. The algorithm construction has a constant time.

Upgrading Performance of DSR Routing Protocol in Mobile Ad Hoc Networks

Routing in mobile ad hoc networks is a challenging task because nodes are free to move randomly. In DSR like all On- Demand routing algorithms, route discovery mechanism is associated with great delay. More Clearly in DSR routing protocol to send route reply packet, when current route breaks, destination seeks a new route. In this paper we try to change route selection mechanism proactively. We also define a link stability parameter in which a stability value is assigned to each link. Given this feature, destination node can estimate stability of routes and can select the best and more stable route. Therefore we can reduce the delay and jitter of sending data packets.

Integrated Energy-Aware Mechanism for MANETs using On-demand Routing

Mobile Ad Hoc Networks (MANETs) are multi-hop wireless networks in which all nodes cooperatively maintain network connectivity. In such a multi-hop wireless network, every node may be required to perform routing in order to achieve end-to-end communication among nodes. These networks are energy constrained as most ad hoc mobile nodes today operate with limited battery power. Hence, it is important to minimize the energy consumption of the entire network in order to maximize the lifetime of ad hoc networks. In this paper, a mechanism involving the integration of load balancing approach and transmission power control approach is introduced to maximize the life-span of MANETs. The mechanism is applied on Ad hoc On-demand Vector (AODV) protocol to make it as energy aware AODV (EA_AODV). The simulation is carried out using GloMoSim2.03 simulator. The results show that the proposed mechanism reduces the average required transmission energy per packet compared to the standard AODV.

Trust Based Energy Aware Reliable Reactive Protocol in Mobile Ad Hoc Networks

Trust and Energy consumption is the most challenging issue in routing protocol design for Mobile ad hoc networks (MANETs), since mobile nodes are battery powered and nodes behaviour are unpredictable. Furthermore replacing and recharging batteries and making nodes co-operative is often impossible in critical environments like military applications. In this paper, we propose a trust based energy aware routing model in MANET. During route discovery, node with more trust and maximum energy capacity is selected as a router based on a parameter called 'Reliability'. Route request from the source is accepted by a node only if its reliability is high. Otherwise, the route request is discarded. This approach forms a reliable route from source to destination thus increasing network life time, improving energy utilization and decreasing number of packet loss during transmission.

Multifunctional Electrical Outlet based on Mobile Ad Hoc Network

Nowadays, new home appliances and office appliances have been developed that communicate with users through the Internet, for remote monitor and remote control. However, developments and sales of these new appliances are just started, then, many products in our houses and offices do not have these useful functions. In few years, we add these new functions to the outlet, it means multifunctional electrical power socket plug adapter. The outlet measure power consumption of connecting appliances, and it can switch power supply to connecting appliances, too. Using this outlet, power supply of old appliances can be control and monitor. And we developed the interface system using web browser to operate it from users[1]. But, this system need to set up LAN cables between outlets and so on. It is not convenience that cables around rooms. In this paper, we develop the system that use wireless mobile ad hoc network instead of wired LAN to communicate with the outlets.

Secure Internet Connectivity for Dynamic Source Routing (DSR) based Mobile Ad hoc Networks

'Secure routing in Mobile Ad hoc networks' and 'Internet connectivity to Mobile Ad hoc networks' have been dealt separately in the past research. This paper proposes a light weight solution for secure routing in integrated Mobile Ad hoc Network (MANET)-Internet. The proposed framework ensures mutual authentication of Mobile Node (MN), Foreign Agent (FA) and Home Agent (HA) to avoid various attacks on global connectivity and employs light weight hop-by-hop authentication and end-to-end integrity to protect the network from most of the potential security attacks. The framework also uses dynamic security monitoring mechanism to monitor the misbehavior of internal nodes. Security and performance analysis show that our proposed framework achieves good security while keeping the overhead and latency minimal.