Design Considerations of Scheduling Systems Suitable for PCB Manufacturing

This paper identifies five key design characteristics of production scheduling software systems in printed circuit board (PCB) manufacturing. The authors consider that, in addition to an effective scheduling engine, a scheduling system should be able to process a preventative maintenance calendar, to give the user the flexibility to handle data using a variety of electronic sources, to run simulations to support decision-making, and to have simple and customisable graphical user interfaces. These design considerations were the result of a review of academic literature, the evaluation of commercial applications and a compilation of requirements of a PCB manufacturer. It was found that, from those systems that were evaluated, those that effectively addressed all five characteristics outlined in this paper were the most robust of all and could be used in PCB manufacturing.

The Study on the Stationarity of Energy Consumption in US States: Considering Structural Breaks, Nonlinearity, and Cross- Sectional Dependency

This study applies the sequential panel selection method (SPSM) procedure proposed by Chortareas and Kapetanios (2009) to investigate the time-series properties of energy consumption in 50 US states from 1963 to 2009. SPSM involves the classification of the entire panel into a group of stationary series and a group of non-stationary series to identify how many and which series in the panel are stationary processes. Empirical results obtained through SPSM with the panel KSS unit root test developed by Ucar and Omay (2009) combined with a Fourier function indicate that energy consumption in all the 50 US states are stationary. The results of this study have important policy implications for the 50 US states.

Analytical Study of Sedimentation Formation in Lined Canals using the SHARC Software- A Case Study of the Sabilli Canal in Dezful, Iran

Sediment formation and its transport along the river course is considered as important hydraulic consideration in river engineering. Their impact on the morphology of rivers on one hand and important considerations of which in the design and construction of the hydraulic structures on the other has attracted the attention of experts in arid and semi-arid regions. Under certain conditions where the momentum energy of the flow stream reaches a specific rate, the sediment materials start to be transported with the flow. This can usually be analyzed in two different categories of suspended and bed load materials. Sedimentation phenomenon along the waterways and the conveyance of vast volume of materials into the canal networks can potentially influence water abstraction in the intake structures. This can pose a serious threat to operational sustainability and water delivery performance in the canal networks. The situation is serious where ineffective watershed management (poor vegetation cover in the water basin) is the underlying cause of soil erosion which feeds the materials into the waterways that intern would necessitate comprehensive study. The present paper aims to present an analytical investigation of the sediment process in the waterways on one hand and estimation of the sediment load transport into the lined canals using the SHARC software on the other. For this reason, the paper focuses on the comparative analysis of the hydraulic behaviors of the Sabilli main canal that feeds the pumping station with that of the Western canal in the Greater Dezful region to identify effective factors in sedimentation and ways of mitigating their impact on water abstraction in the canal systems. The method involved use of observational data available in the Dezful Dastmashoon hydrometric station along a 6 km waterway of the Sabilli main canal using the SHARC software to estimate the suspended load concentration and bed load materials. Results showed the transport of a significant volume of sediment loads from the waterways into the canal system which is assumed to have arisen from the absence of stilling basin on one hand and the gravity flow on the other has caused serious challenges. This is contrary to what occurs in the Sabilli canal, where the design feature which incorporates a settling basin just before the pumping station is the major cause of reduced sediment load transport into the canal system.Results showed that modification of the present design features by constructing a settling basin just upstream of the western intake structure can considerably reduce the entry of sediment materials into the canal system. Not only this can result in the sustainability of the hydraulic structures but can also improve operational performance of water conveyance and distribution system, all of which are the pre-requisite to secure reliable and equitable water delivery regime for the command area.

Research of the Behavior of Solar Module Frame Installed by Solar Clamping System by Finite Element Method

Mechanical design of the thin-film solar framed module and mounting system is important to enhance module reliability and to increase areas of applications. The stress induced by different mounting positions played a main role controlling the stability of the whole mechanical structure. From the finite element method, under the pressure from the back of module, the stress at Lc (center point of the Long frame) increased and the stresses at Center, Corner and Sc (center point of the Short frame) decreased while the mounting position was away from the center of the module. In addition, not only the stress of the glass but also the stress of the frame decreased. Accordingly it was safer to mount in the position away from the center of the module. The emphasis of designing frame system of the module was on the upper support of the Short frame. Strength of the overall structure and design of the corner were also important due to the complexity of the stress in the Long frame.

Exploring Life Meaningfulness and Its Psychosocial Correlates among Recovering Substance Users – An Indian Perspective

The present study was done primarily to address two major research gaps: firstly, development of an empirical measure of life meaningfulness for substance users and secondly, to determine the psychosocial determinants of life meaningfulness among the substance users. The study is classified into two phases: the first phase which dealt with development of Life Meaningfulness Scale and the second phase which examined the relationship between life meaningfulness and social support, abstinence self efficacy and depression. Both qualitative and quantitative approaches were used for framing items. A Principal Component Analysis yielded three components: Overall Goal Directedness, Striving for healthy lifestyle and Concern for loved ones which collectively accounted for 42.06% of the total variance. The scale and its subscales were also found to be highly reliable. Multiple regression analyses in the second phase of the study revealed that social support and abstinence self efficacy significantly predicted life meaningfulness among 48 recovering inmates of a de-addiction center while level of depression failed to predict life meaningfulness.

The Performance of Predictive Classification Using Empirical Bayes

This research is aimed to compare the percentages of correct classification of Empirical Bayes method (EB) to Classical method when data are constructed as near normal, short-tailed and long-tailed symmetric, short-tailed and long-tailed asymmetric. The study is performed using conjugate prior, normal distribution with known mean and unknown variance. The estimated hyper-parameters obtained from EB method are replaced in the posterior predictive probability and used to predict new observations. Data are generated, consisting of training set and test set with the sample sizes 100, 200 and 500 for the binary classification. The results showed that EB method exhibited an improved performance over Classical method in all situations under study.

Hardiness vs Alienation Personality Construct Essentially Explains Burnout Proclivity and Erroneous Computer Entry Problems in Rural Hellenic Hospital Labs

Erroneous computer entry problems [here: 'e'errors] in hospital labs threaten the patients-–health carers- relationship, undermining the health system credibility. Are e-errors random, and do lab professionals make them accidentally, or may they be traced through meaningful determinants? Theories on internal causality of mistakes compel to seek specific causal ascriptions of hospital lab eerrors instead of accepting some inescapability. Undeniably, 'To Err is Human'. But in view of rapid global health organizational changes, e-errors are too expensive to lack in-depth considerations. Yet, that efunction might supposedly be entrenched in the health carers- job description remains under dispute – at least for Hellenic labs, where e-use falls behind generalized(able) appreciation and application. In this study: i) an empirical basis of a truly high annual cost of e-errors at about €498,000.00 per rural Hellenic hospital was established, hence interest in exploring the issue was sufficiently substantiated; ii) a sample of 270 lab-expert nurses, technicians and doctors were assessed on several personality, burnout and e-error measures, and iii) the hypothesis that the Hardiness vs Alienation personality construct disposition explains resistance vs proclivity to e-errors was tested and verified: Hardiness operates as a resilience source in the encounter of high pressures experienced in the hospital lab, whereas its 'opposite', i.e., Alienation, functions as a predictor, not only of making e-errors, but also of leading to burn-out. Implications for apt interventions are discussed.

Investigating the Impact of Wind Speed on Active and Reactive Power Penetration to the Distribution Network

Wind power is among the most actively developing distributed generation (DG) technology. Majority of the wind power based DG technologies employ wind turbine induction generators (WTIG) instead of synchronous generators, for the technical advantages like: reduced size, increased robustness, lower cost, and increased electromechanical damping. However, dynamic changes of wind speed make the amount of active/reactive power injected/drawn to a WTIG embedded distribution network highly variable. This paper analyzes the effect of wind speed changes on the active and reactive power penetration to the wind energy embedded distribution network. Four types of wind speed changes namely; constant, linear change, gust change and random change of wind speed are considered in the analysis. The study is carried out by three-phase, non-linear, dynamic simulation of distribution system component models. Results obtained from the investigation are presented and discussed.

Real Time Multi-Sensory Force Sensing Mat for Sports Biomechanics and Human Gait Analysis

This paper presents a real time force sensing instrument that is designed for human gait analysis purposes. It is capable of recording and monitoring ground reaction forces exerted by human foot during various activities such as walking, running and jumping in real time. In overall, force sensing mat mainly consists of three elements: the force sensing mat, signal conditioning circuit and data acquisition device. Force sensing mat is the mat that contains an array of force sensing elements. To control and process the incoming signal from the force sensing mat, Force-Logger and Force-Reloader are developed using National Instrument Labview. This paper describes the architecture of the force sensing mat, signal conditioning circuit and the real time streaming of the incoming data from the force sensing mat. Additionally, a preliminary experiment dataset is presented in this paper.

A New Load Frequency Controller based on Parallel Fuzzy PI with Conventional PD (FPI-PD)

The artificial intelligent controller in power system plays as most important rule for many applications such as system operation and its control specially Load Frequency Controller (LFC). The main objective of LFC is to keep the frequency and tie-line power close to their decidable bounds in case of disturbance. In this paper, parallel fuzzy PI adaptive with conventional PD technique for Load Frequency Control system was proposed. PSO optimization method used to optimize both of scale fuzzy PI and tuning of PD. Two equal interconnected power system areas were used as a test system. Simulation results show the effectiveness of the proposed controller compared with different PID and classical fuzzy PI controllers in terms of speed response and damping frequency.

Convection through Light Weight Timber Constructions with Mineral Wool

The major part of light weight timber constructions consists of insulation. Mineral wool is the most commonly used insulation due to its cost efficiency and easy handling. The fiber orientation and porosity of this insulation material enables flowthrough. The air flow resistance is low. If leakage occurs in the insulated bay section, the convective flow may cause energy losses and infiltration of the exterior wall with moisture and particles. In particular the infiltrated moisture may lead to thermal bridges and growth of health endangering mould and mildew. In order to prevent this problem, different numerical calculation models have been developed. All models developed so far have a potential for completion. The implementation of the flow-through properties of mineral wool insulation may help to improve the existing models. Assuming that the real pressure difference between interior and exterior surface is larger than the prescribed pressure difference in the standard test procedure for mineral wool ISO 9053 / EN 29053, measurements were performed using the measurement setup for research on convective moisture transfer “MSRCMT". These measurements show, that structural inhomogeneities of mineral wool effect the permeability only at higher pressure differences, as applied in MSRCMT. Additional microscopic investigations show, that the location of a leak within the construction has a crucial influence on the air flow-through and the infiltration rate. The results clearly indicate that the empirical values for the acoustic resistance of mineral wool should not be used for the calculation of convective transfer mechanisms.

Behavioral Study of TCSC Device – A MATLAB/Simulink Implementation

A basic conceptual study of TCSC device on Simulink is a teaching aid and helps in understanding the rudiments of the topic. This paper thus stems out from basics of TCSC device and analyzes the impedance characteristics and associated single & multi resonance conditions. The Impedance characteristics curve is drawn for different values of inductance in MATLAB using M-files. The study is also helpful in estimating the appropriate inductance and capacitance values which have influence on multi resonance point in TCSC device. The capacitor voltage, line current, thyristor current and capacitor current waveforms are discussed briefly as simulation results. Simulink model of TCSC device is given and corresponding waveforms are analyzed. The subsidiary topics e.g. power oscillation damping, SSR mitigation and transient stability is also brought out.

Effect of Real Wastewater on Biotransformation of 17α-ethynylestradiol by Ammonia-Oxidizing Bacteria in Nitrifying Activated Sludge

17α-ethynylestradiol (EE2) is a synthetic estrogen used as a key ingredient in an oral contraceptives pill. EE2 is an endocrine disrupting compound, high in estrogenic potency. Although EE2 exhibits low degree of biodegradability with common microorganisms in wastewater treatment plants (WWTPs), this compound can be biotransformed by ammonia-oxidizing bacteria (AOB) via a co-metabolism mechanism in WWTPs. This study aimed to investigate the effect of real wastewater on biotransformation of EE2 by AOB. A preliminary experiment on the effect of nitrite and pH levels on abiotic transformation of EE2 suggested that the abiotic transformation occurred at only pH

The Effect of IT Service Quality Attributes on Supply Chain Management and Performance

Nowadays, where most of the leading economies are service oriented and e-business is being widely used for their management, supply chain management has become one of the most studied and practiced fields. Quality has an important role on today-s business processes, so it is important to understand the impact of IT service quality on the performance of supply chains. This paper will start by analyzing the Supply Chain Operations Reference (SCOR) model and each of its five activities: Plan, Source, Make, Delivery, and Return. This article proposes a framework for analyzing Effect of IT Service Quality on Supply Chain Performance. Using the proposed framework, hypotheses are framed for the direct effect of IT service quality on Supply Chain Performance and its indirect effect through effective Supply Chain Management. The framework will be validated empirically based on the surveys of executives of various organizations and statistical analyses of the data collected.

Teager-Huang Analysis Applied to Sonar Target Recognition

In this paper, a new approach for target recognition based on the Empirical mode decomposition (EMD) algorithm of Huang etal. [11] and the energy tracking operator of Teager [13]-[14] is introduced. The conjunction of these two methods is called Teager-Huang analysis. This approach is well suited for nonstationary signals analysis. The impulse response (IR) of target is first band pass filtered into subsignals (components) called Intrinsic mode functions (IMFs) with well defined Instantaneous frequency (IF) and Instantaneous amplitude (IA). Each IMF is a zero-mean AM-FM component. In second step, the energy of each IMF is tracked using the Teager energy operator (TEO). IF and IA, useful to describe the time-varying characteristics of the signal, are estimated using the Energy separation algorithm (ESA) algorithm of Maragos et al .[16]-[17]. In third step, a set of features such as skewness and kurtosis are extracted from the IF, IA and IMF energy functions. The Teager-Huang analysis is tested on set of synthetic IRs of Sonar targets with different physical characteristics (density, velocity, shape,? ). PCA is first applied to features to discriminate between manufactured and natural targets. The manufactured patterns are classified into spheres and cylinders. One hundred percent of correct recognition is achieved with twenty three echoes where sixteen IRs, used for training, are free noise and seven IRs, used for testing phase, are corrupted with white Gaussian noise.

The Impact of Recommendation Sources on Online Purchase Intentions: The Moderating Effects of Gender and Perceived Risk

This study examines the issue of recommendation sources from the perspectives of gender and consumers- perceived risk, and validates a model for the antecedents of consumer online purchases. The method of obtaining quantitative data was that of the instrument of a survey questionnaire. Data were collected via questionnaires from 396 undergraduate students aged 18-24, and a multiple regression analysis was conducted to identify causal relationships. Empirical findings established the link between recommendation sources (word-of-mouth, advertising, and recommendation systems) and the likelihood of making online purchases and demonstrated the role of gender and perceived risk as moderators in this context. The results showed that the effects of word-of-mouth on online purchase intentions were stronger than those of advertising and recommendation systems. In addition, female consumers have less experience with online purchases, so they may be more likely than males to refer to recommendations during the decision-making process. The findings of the study will help marketers to address the recommendation factor which influences consumers- intention to purchase and to improve firm performances to meet consumer needs.

Evaluation of Stiffness and Damping Coefficients of Multiple Axial Groove Water Lubricated Bearing Using Computational Fluid Dynamics

This research details a Computational Fluid Dynamics (CFD) approach to model fluid flow in a journal bearing with 8 equispaced semi-circular axial grooves. Water is used as the lubricant and is fed from one end of the bearing to the other, under pressure. The geometry of the bearing is modeled using a commercially available modeling software GAMBIT and the flow analysis is performed using a dedicated CFD analysis software FLUENT. The pressure distribution in the bearing clearance is obtained from FLUENT for various whirl ratios and is used to calculate the hydrodynamic force components in the radial and tangential direction of the bearing. These values along with the various whirl speeds can be used to do a regression analysis to determine the stiffness and damping coefficients. The values obtained are then compared with the stiffness and damping coefficients of a 3 Axial groove water lubricated journal bearing and those obtained from a FORTRAN code for a similar bearing.

Fuzzy Controller Design for TCSC to Improve Power Oscillations Damping

Series compensators have been used for many years, to increase the stability and load ability of transmission line. They compensate retarded or advanced volt drop of transmission lines by placing advanced or retarded voltage in series with them to compensate the effective reactance, which cause to increase load ability of transmission lines. In this paper, two method of fuzzy controller, based on power reference tracking and impedance reference tracking have been developed on TCSC controller in order to increase load ability and improving power oscillation damping of system. In these methods, fire angle of thyristors are determined directly through the special Rule-bases with the error and change of error as the inputs. The simulation results of two area four- machines power system show the good performance of power oscillation damping in system. Comparison of this method with classical PI controller shows the increasing speed of system response in power oscillation damping.

Empirical Evidence on Equity Valuation of Thai Firms

This study aims at providing empirical evidence on a comparison of two equity valuation models: (1) the dividend discount model (DDM) and (2) the residual income model (RIM), in estimating equity values of Thai firms during 1995-2004. Results suggest that DDM and RIM underestimate equity values of Thai firms and that RIM outperforms DDM in predicting cross-sectional stock prices. Results on regression of cross-sectional stock prices on the decomposed DDM and RIM equity values indicate that book value of equity provides the greatest incremental explanatory power, relative to other components in DDM and RIM terminal values, suggesting that book value distortions resulting from accounting procedures and choices are less severe than forecast and measurement errors in discount rates and growth rates. We also document that the incremental explanatory power of book value of equity during 1998-2004, representing the information environment under Thai Accounting Standards reformed after the 1997 economic crisis to conform to International Accounting Standards, is significantly greater than that during 1995-1996, representing the information environment under the pre-reformed Thai Accounting Standards. This implies that the book value distortions are less severe under the 1997 Reformed Thai Accounting Standards than the pre-reformed Thai Accounting Standards.

Textile Technology: Application in Sport and Medicine

Sport is one of the sectors in which the largest technical projections regarding the functions of textiles can be found. He is a large consumer of high performance composite materials and new fibers. It is one of the sectors where the innovation is the most important when the greatest numbers of spectacular developments are aimed at increasing performance. In medicine, textile innovation is used and contributes in the amelioration of different materials such as dressing, orthosis, bandages, etc. The hygienic textiles in non-woven materials record a strong growth. The objective of this study is to show the different advances of development we obtained in the both ways (sport and medicine). Polyamide fibers where developed tacking into account the specification of the high level athlete’s performance like swimming and triathlon (Olympic Games, Brazil 2016). The first textile utilization was for skiing (Olympic Games, Sotchi 2014). The different textiles technologies where adapted for medicine.