Developing a Research Framework for Investigating the Transparency of ePortfolios

This paper describes the evolution of strategies to evaluate ePortfolios in an online Master-s of Education (M.Ed.) degree in Instructional Technology. The ePortfolios are required as a culminating activity for students in the program. By using Web 2.0 tools to develop the ePortfolios, students are able to showcase their technical skills, integrate national standards, demonstrate their professional understandings, and reflect on their individual learning. Faculty have created assessment strategies to evaluate student achievement of these skills. To further develop ePortfolios as a tool promoting authentic learning, faculty are moving toward integrating transparency as part of the evaluation process.

Design of an SNMP Agent for OSGi Service Platforms

On one hand, SNMP (Simple Network Management Protocol) allows integrating different enterprise elements connected through Internet into a standardized remote management. On the other hand, as a consequence of the success of Intelligent Houses they can be connected through Internet now by means of a residential gateway according to a common standard called OSGi (Open Services Gateway initiative). Due to the specifics of OSGi Service Platforms and their dynamic nature, specific design criterions should be defined to implement SNMP Agents for OSGi in order to integrate them into the SNMP remote management. Based on the analysis of the relation between both standards (SNMP and OSGi), this paper shows how OSGi Service Platforms can be included into the SNMP management of a global enterprise, giving implementation details about an SNMP Agent solution and the definition of a new MIB (Management Information Base) for managing OSGi platforms that takes into account the specifics and dynamic nature of OSGi.

Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions

In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.

A Hybrid Metaheuristic Framework for Evolving the PROAFTN Classifier

In this paper, a new learning algorithm based on a hybrid metaheuristic integrating Differential Evolution (DE) and Reduced Variable Neighborhood Search (RVNS) is introduced to train the classification method PROAFTN. To apply PROAFTN, values of several parameters need to be determined prior to classification. These parameters include boundaries of intervals and relative weights for each attribute. Based on these requirements, the hybrid approach, named DEPRO-RVNS, is presented in this study. In some cases, the major problem when applying DE to some classification problems was the premature convergence of some individuals to local optima. To eliminate this shortcoming and to improve the exploration and exploitation capabilities of DE, such individuals were set to iteratively re-explored using RVNS. Based on the generated results on both training and testing data, it is shown that the performance of PROAFTN is significantly improved. Furthermore, the experimental study shows that DEPRO-RVNS outperforms well-known machine learning classifiers in a variety of problems.

Development of a Catchment Water Quality Model for Continuous Simulations of Pollutants Build-up and Wash-off

Estimation of runoff water quality parameters is required to determine appropriate water quality management options. Various models are used to estimate runoff water quality parameters. However, most models provide event-based estimates of water quality parameters for specific sites. The work presented in this paper describes the development of a model that continuously simulates the accumulation and wash-off of water quality pollutants in a catchment. The model allows estimation of pollutants build-up during dry periods and pollutants wash-off during storm events. The model was developed by integrating two individual models; rainfall-runoff model, and catchment water quality model. The rainfall-runoff model is based on the time-area runoff estimation method. The model allows users to estimate the time of concentration using a range of established methods. The model also allows estimation of the continuing runoff losses using any of the available estimation methods (i.e., constant, linearly varying or exponentially varying). Pollutants build-up in a catchment was represented by one of three pre-defined functions; power, exponential, or saturation. Similarly, pollutants wash-off was represented by one of three different functions; power, rating-curve, or exponential. The developed runoff water quality model was set-up to simulate the build-up and wash-off of total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The application of the model was demonstrated using available runoff and TSS field data from road and roof surfaces in the Gold Coast, Australia. The model provided excellent representation of the field data demonstrating the simplicity yet effectiveness of the proposed model.

Integrating PZB Model and TRIZ for Service Innovation of Tele-Healthcare

Due to the rise of aging population, effective utilization of healthcare resources has become an important issue. With the advance of ICT technology, the application of tele-healthcare service has received more attention than ever. The main purpose of this research is to investigate how to conduct innovative design for tele-healthcare service based on user-s perspectives. First, the healthcare service blueprint was used to describe the processes of tele-healthcare service delivery, and then construct PZB service quality gap model based on the literature and practitioners- interviews. Next, TRIZ theory is applied to implement service innovation. We found the proposed service innovation procedures can effectively improve the quality of service design.

A Method to Improve Test Process in Federal Enterprise Architecture Framework Using ISTQB Framework

Enterprise Architecture (EA) is a framework for description, coordination and alignment of all activities across the organization in order to achieve strategic goals using ICT enablers. A number of EA-compatible frameworks have been developed. We, in this paper, mainly focus on Federal Enterprise Architecture Framework (FEAF) since its reference models are plentiful. Among these models we are interested here in its business reference model (BRM). The test process is one important subject of an EA project which is to somewhat overlooked. This lack of attention may cause drawbacks or even failure of an enterprise architecture project. To address this issue we intend to use International Software Testing Qualification Board (ISTQB) framework and standard test suites to present a method to improve EA testing process. The main challenge is how to communicate between the concepts of EA and ISTQB. In this paper, we propose a method for integrating these concepts.

Research of Ring MEMS Rate Integrating Gyroscopes

This paper To get the angle value with a MEMS rate gyroscope in some specific field, the usual method is to make an integral operation to the rate output, which will lead the error cumulating effect. So the rate gyro is not suitable. MEMS rate integrating gyroscope (MRIG) will solve this problem. A DSP system has been developed to implement the control arithmetic. The system can measure the angle of rotation directly by the control loops that make the sensor work in whole-angle mode. Modeling the system with MATLAB, desirable results of angle outputs are got, which prove the feasibility of the control arithmetic.

Integrating Big Island Layout with Pull System for Production Optimization

Lean manufacturing is a production philosophy made popular by Toyota Motor Corporation (TMC). It is globally known as the Toyota Production System (TPS) and has the ultimate aim of reducing cost by thoroughly eliminating wastes or muda. TPS embraces the Just-in-time (JIT) manufacturing; achieving cost reduction through lead time reduction. JIT manufacturing can be achieved by implementing Pull system in the production. Furthermore, TPS aims to improve productivity and creating continuous flow in the production by arranging the machines and processes in cellular configurations. This is called as Cellular Manufacturing Systems (CMS). This paper studies on integrating the CMS with the Pull system to establish a Big Island-Pull system production for High Mix Low Volume (HMLV) products in an automotive component industry. The paper will use the build-in JIT system steps adapted from TMC to create the Pull system production and also create a shojinka line which, according to takt time, has the flexibility to adapt to demand changes simply by adding and taking out manpower. This will lead to optimization in production.

Integrating Life Cycle Uncertainties for Evaluating a Building Overall Cost

Overall cost is a significant consideration in any decision-making process. Although many studies were carried out on overall cost in construction, little has treated the uncertainties of real life cycle development. On the basis of several case studies, a feedback process was performed on the historical data of studied buildings. This process enabled to identify some factors causing uncertainty during the operational period. As a result, the research proposes a new method for assessing the overall cost during a part of the building-s life cycle taking account of the building actual value, its end-of-life value and the influence of the identified life cycle uncertainty factors. The findings are a step towards a higher level of reliability in overall cost evaluation taking account of some usually unexpected uncertainty factors.

Mobile Velocity Based Bidirectional Call Overflow Scheme in Hierarchical Cellular System

In the age of global communications, heterogeneous networks are seen to be the best choice of strategy to ensure continuous and uninterruptible services. This will allow mobile terminal to stay in connection even they are migrating into different segment coverage through the handoff process. With the increase of teletraffic demands in mobile cellular system, hierarchical cellular systems have been adopted extensively for more efficient channel utilization and better QoS (Quality of Service). This paper presents a bidirectional call overflow scheme between two layers of microcells and macrocells, where handoffs are decided by the velocity of mobile making the call. To ensure that handoff calls are given higher priorities, it is assumed that guard channels are assigned in both macrocells and microcells. A hysteresis value introduced in mobile velocity is used to allow mobile roam in the same cell if its velocity changes back within the set threshold values. By doing this the number of handoffs is reduced thereby reducing the processing overhead and enhancing the quality of service to the end user.

A Study on Remote On-Line Diagnostic System for Vehicles by Integrating the Technology of OBD, GPS, and 3G

This paper presents a remote on-line diagnostic system for vehicles via the use of On-Board Diagnostic (OBD), GPS, and 3G techniques. The main parts of the proposed system are on-board computer, vehicle monitor server, and vehicle status browser. First, the on-board computer can obtain the location of deriver and vehicle status from GPS receiver and OBD interface, respectively. Then on-board computer will connect with the vehicle monitor server through 3G network to transmit the real time vehicle system status. Finally, vehicle status browser could show the remote vehicle status including vehicle speed, engine rpm, battery voltage, engine coolant temperature, and diagnostic trouble codes. According to the experimental results, the proposed system can help fleet managers and car knockers to understand the remote vehicle status. Therefore this system can decrease the time of fleet management and vehicle repair due to the fleet managers and car knockers who find the diagnostic trouble messages in time.

Adaptive Digital Watermarking Integrating Fuzzy Inference HVS Perceptual Model

An adaptive Fuzzy Inference Perceptual model has been proposed for watermarking of digital images. The model depends on the human visual characteristics of image sub-regions in the frequency multi-resolution wavelet domain. In the proposed model, a multi-variable fuzzy based architecture has been designed to produce a perceptual membership degree for both candidate embedding sub-regions and strength watermark embedding factor. Different sizes of benchmark images with different sizes of watermarks have been applied on the model. Several experimental attacks have been applied such as JPEG compression, noises and rotation, to ensure the robustness of the scheme. In addition, the model has been compared with different watermarking schemes. The proposed model showed its robustness to attacks and at the same time achieved a high level of imperceptibility.

LAYMOD; A Layered and Modular Platform for CAx Collaboration Management and Supporting Product data Integration based on STEP Standard

Nowadays companies strive to survive in a competitive global environment. To speed up product development/modifications, it is suggested to adopt a collaborative product development approach. However, despite the advantages of new IT improvements still many CAx systems work separately and locally. Collaborative design and manufacture requires a product information model that supports related CAx product data models. To solve this problem many solutions are proposed, which the most successful one is adopting the STEP standard as a product data model to develop a collaborative CAx platform. However, the improvement of the STEP-s Application Protocols (APs) over the time, huge number of STEP AP-s and cc-s, the high costs of implementation, costly process for conversion of older CAx software files to the STEP neutral file format; and lack of STEP knowledge, that usually slows down the implementation of the STEP standard in collaborative data exchange, management and integration should be considered. In this paper the requirements for a successful collaborative CAx system is discussed. The STEP standard capability for product data integration and its shortcomings as well as the dominant platforms for supporting CAx collaboration management and product data integration are reviewed. Finally a platform named LAYMOD to fulfil the requirements of CAx collaborative environment and integrating the product data is proposed. The platform is a layered platform to enable global collaboration among different CAx software packages/developers. It also adopts the STEP modular architecture and the XML data structures to enable collaboration between CAx software packages as well as overcoming the STEP standard limitations. The architecture and procedures of LAYMOD platform to manage collaboration and avoid contradicts in product data integration are introduced.

Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery

Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions.

Integrating Visual Modeling throughout the Computer Science Curriculum

The purposes of this paper are to (1) promote excellence in computer science by suggesting a cohesive innovative approach to fill well documented deficiencies in current computer science education, (2) justify (using the authors- and others anecdotal evidence from both the classroom and the real world) why this approach holds great potential to successfully eliminate the deficiencies, (3) invite other professionals to join the authors in proof of concept research. The authors- experiences, though anecdotal, strongly suggest that a new approach involving visual modeling technologies should allow computer science programs to retain a greater percentage of prospective and declared majors as students become more engaged learners, more successful problem-solvers, and better prepared as programmers. In addition, the graduates of such computer science programs will make greater contributions to the profession as skilled problem-solvers. Instead of wearily rememorizing code as they move to the next course, students will have the problem-solving skills to think and work in more sophisticated and creative ways.

A Post Keynesian Environmental Macroeconomic Model for Agricultural Water Sustainability under Climate Change in the Murray-Darling Basin, Australia

Climate change has profound consequences for the agriculture of south-eastern Australia and its climate-induced water shortage in the Murray-Darling Basin. Post Keynesian Economics (PKE) macro-dynamics, along with Kaleckian investment and growth theory, are used to develop an ecological-economic system dynamics model of this complex nonlinear river basin system. The Murray- Darling Basin Simulation Model (MDB-SM) uses the principles of PKE to incorporate the fundamental uncertainty of economic behaviors of farmers regarding the investments they make and the climate change they face, particularly as regards water ecosystem services. MDB-SM provides a framework for macroeconomic policies, especially for long-term fiscal policy and for policy directed at the sustainability of agricultural water, as measured by socio-economic well-being considerations, which include sustainable consumption and investment in the river basin. The model can also reproduce other ecological and economic aspects and, for certain parameters and initial values, exhibit endogenous business cycles and ecological sustainability with realistic characteristics. Most importantly, MDBSM provides a platform for the analysis of alternative economic policy scenarios. These results reveal the importance of understanding water ecosystem adaptation under climate change by integrating a PKE macroeconomic analytical framework with the system dynamics modelling approach. Once parameterised and supplied with historical initial values, MDB-SM should prove to be a practical tool to provide alternative long-term policy simulations of agricultural water and socio-economic well-being.

Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Construction of Intersection of Nondeterministic Finite Automata using Z Notation

Functionalities and control behavior are both primary requirements in design of a complex system. Automata theory plays an important role in modeling behavior of a system. Z is an ideal notation which is used for describing state space of a system and then defining operations over it. Consequently, an integration of automata and Z will be an effective tool for increasing modeling power for a complex system. Further, nondeterministic finite automata (NFA) may have different implementations and therefore it is needed to verify the transformation from diagrams to a code. If we describe formal specification of an NFA before implementing it, then confidence over transformation can be increased. In this paper, we have given a procedure for integrating NFA and Z. Complement of a special type of NFA is defined. Then union of two NFAs is formalized after defining their complements. Finally, formal construction of intersection of NFAs is described. The specification of this relationship is analyzed and validated using Z/EVES tool.

A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.