An Intelligent Optimization Model for Multi-objective Order Allocation Planning

This paper presents a multi-objective order allocation planning problem with the consideration of various real-world production features. A novel hybrid intelligent optimization model, integrating a multi-objective memetic optimization process, a Monte Carlo simulation technique and a heuristic pruning technique, is proposed to handle this problem. Experiments based on industrial data are conducted to validate the proposed model. Results show that (1) the proposed model can effectively solve the investigated problem by providing effective production decision-making solutions, which outperformsan NSGA-II-based optimization process and an industrial method.

Artificial Intelligence Support for Interferon Treatment Decision in Chronic Hepatitis B

Chronic hepatitis B can evolve to cirrhosis and liver cancer. Interferon is the only effective treatment, for carefully selected patients, but it is very expensive. Some of the selection criteria are based on liver biopsy, an invasive, costly and painful medical procedure. Therefore, developing efficient non-invasive selection systems, could be in the patients benefit and also save money. We investigated the possibility to create intelligent systems to assist the Interferon therapeutical decision, mainly by predicting with acceptable accuracy the results of the biopsy. We used a knowledge discovery in integrated medical data - imaging, clinical, and laboratory data. The resulted intelligent systems, tested on 500 patients with chronic hepatitis B, based on C5.0 decision trees and boosting, predict with 100% accuracy the results of the liver biopsy. Also, by integrating the other patients selection criteria, they offer a non-invasive support for the correct Interferon therapeutic decision. To our best knowledge, these decision systems outperformed all similar systems published in the literature, and offer a realistic opportunity to replace liver biopsy in this medical context.

Integrating Security Indifference Curve to Formal Decision Evaluation

Decisions are regularly made during a project or daily life. Some decisions are critical and have a direct impact on project or human success. Formal evaluation is thus required, especially for crucial decisions, to arrive at the optimal solution among alternatives to address issues. According to microeconomic theory, all people-s decisions can be modeled as indifference curves. The proposed approach supports formal analysis and decision by constructing indifference curve model from the previous experts- decision criteria. These knowledge embedded in the system can be reused or help naïve users select alternative solution of the similar problem. Moreover, the method is flexible to cope with unlimited number of factors influencing the decision-making. The preliminary experimental results of the alternative selection are accurately matched with the expert-s decisions.

Efficient and Extensible Data Processing Framework in Ubiquitious Sensor Networks

This paper presents the design and implements the prototype of an intelligent data processing framework in ubiquitous sensor networks. Much focus is put on how to handle the sensor data stream as well as the interoperability between the low-level sensor data and application clients. Our framework first addresses systematic middleware which mitigates the interaction between the application layer and low-level sensors, for the sake of analyzing a great volume of sensor data by filtering and integrating to create value-added context information. Then, an agent-based architecture is proposed for real-time data distribution to efficiently forward a specific event to the appropriate application registered in the directory service via the open interface. The prototype implementation demonstrates that our framework can host a sophisticated application on the ubiquitous sensor network and it can autonomously evolve to new middleware, taking advantages of promising technologies such as software agents, XML, cloud computing, and the like.

A Laser Point Interaction System Integrating Mouse Functions

The computer has become an essential tool in modern life, and the combined use of a computer with a projector is very common in teaching and presentations. However, as typical computer operating devices involve a mouse or keyboard, when making presentations, users often need to stay near the computer to execute functions such as changing pages, writing, and drawing, thus, making the operation time-consuming, and reducing interactions with the audience. This paper proposes a laser pointer interaction system able to simulate mouse functions in order that users need not remain near the computer, but can directly use laser pointer operations from at a distance. It can effectively reduce the users- time spent by the computer, allowing for greater interactions with the audience.

Potential of Energy Conservation of Daylight Linked Lighting System in India

Demand of energy is increasing faster than the generation. It leads shortage of power in all sectors of society. At peak hours this shortage is higher. Unless we utilize energy efficient technology, it is very difficult to minimize the shortage of energy. So energy efficiency program and energy conservation has an important role. Energy efficient technologies are cost intensive hence it is always not possible to implement in country like India. In the recent study, an educational building with operating hours from 10:00 a.m. to 05:00 p.m. has been selected to quantify the possibility of lighting energy conservation. As the operating hour is in daytime, integration of daylight with artificial lighting system will definitely reduce the lighting energy consumption. Moreover the initial investment has been given priority and hence the existing lighting installation was unaltered. An automatic controller has been designed which will be operated as a function of daylight through windows and the lighting system of the room will function accordingly. The result of the study of integrating daylight gave quite satisfactory for visual comfort as well as energy conservation.

Integrating Hedgerow into Town Planning: A Framework for Sustainable Residential Development

The vast rural landscape in the southern United States is conspicuously characterized by the hedgerow trees or groves. The patchwork landscape of fields surrounded by high hedgerows is a traditional and familiar feature of the American countryside. Hedgerows are in effect linear strips of trees, groves, or woodlands, which are often critical habitats for wildlife and important for the visual quality of the landscape. As landscape interfaces, hedgerows define the spaces in the landscape, give the landscape life and meaning, and enrich ecologies and cultural heritages of the American countryside. Although hedgerows were originally intended as fences and to mark property and townland boundaries, they are not merely the natural or man-made additions to the landscape--they have gradually become “naturalized" into the landscape, deeply rooted in the rural culture, and now formed an important component of the southern American rural environment. However, due to the ever expanding real estate industry and high demand for new residential development, substantial areas of authentic hedgerow landscape in the southern United States are being urbanized. Using Hudson Farm as an example, this study illustrated guidelines of how hedgerows can be integrated into town planning as green infrastructure and landscape interface to innovate and direct sustainable land use, and suggest ways in which such vernacular landscapes can be preserved and integrated into new development without losing their contextual inspiration.

An Effective Hybrid Genetic Algorithm for Job Shop Scheduling Problem

The job shop scheduling problem (JSSP) is well known as one of the most difficult combinatorial optimization problems. This paper presents a hybrid genetic algorithm for the JSSP with the objective of minimizing makespan. The efficiency of the genetic algorithm is enhanced by integrating it with a local search method. The chromosome representation of the problem is based on operations. Schedules are constructed using a procedure that generates full active schedules. In each generation, a local search heuristic based on Nowicki and Smutnicki-s neighborhood is applied to improve the solutions. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.

XML Integration of Data from CloudSat Satellite and GMS-6 Water Vapor Satellite

This study aimed at developing visualization tools for integrating CloudSat images and Water Vapor Satellite images. KML was used for integrating data from CloudSat Satellite and GMS-6 Water Vapor Satellite. CloudSat 2D images were transformed into 3D polygons in order to achieve 3D images. Before overlaying the images on Google Earth, GMS-6 water vapor satellite images had to be rescaled into linear images. Web service was developed using webMathematica. Shoreline from GMS-6 images was compared with shoreline from LandSat images on Google Earth for evaluation. The results showed that shoreline from GMS-6 images was highly matched with the shoreline in LandSat images from Google Earth. For CloudSat images, the visualizations were compared with GMS-6 images on Google Earth. The results showed that CloudSat and GMS-6 images were highly correlated.

A Training Model for Successful Implementation of Enterprise Resource Planning

It well recognized that one feature that makes a successful company is its ability to successfully align its business goals with its information communication technologies platform. Enterprise Resource Planning (ERP) systems contribute to achieve better performance by integrating various business functions and providing support for information flows. However, the technological systems complexity is known to prevent the business users to exploit in an efficient way the Enterprise Resource Planning Systems (ERP). This paper aims to investigate the role of training in improving the usage of ERP systems. To this end, we have designed an instrument survey to employees of a Norwegian multinational global provider of technology solutions. Based on the analysis of collected data, we have delineated a training model that could be high relevance for both researchers and practitioners as a step towards a better understanding of ERP system implementation.

Image Sensor Matrix High Speed Simulation

This paper presents a new high speed simulation methodology to solve the long simulation time problem of CMOS image sensor matrix. Generally, for integrating the pixel matrix in SOC and simulating the system performance, designers try to model the pixel in various modeling languages such as VHDL-AMS, SystemC or Matlab. We introduce a new alternative method based on spice model in cadence design platform to achieve accuracy and reduce simulation time. The simulation results indicate that the pixel output voltage maximum error is at 0.7812% and time consumption reduces from 2.2 days to 13 minutes achieving about 240X speed-up for the 256x256 pixel matrix.

Dynamic-Stochastic Influence Diagrams: Integrating Time-Slices IDs and Discrete Event Systems Modeling

The Influence Diagrams (IDs) is a kind of Probabilistic Belief Networks for graphic modeling. The usage of IDs can improve the communication among field experts, modelers, and decision makers, by showing the issue frame discussed from a high-level point of view. This paper enhances the Time-Sliced Influence Diagrams (TSIDs, or called Dynamic IDs) based formalism from a Discrete Event Systems Modeling and Simulation (DES M&S) perspective, for Exploring Analysis (EA) modeling. The enhancements enable a modeler to specify times occurred of endogenous events dynamically with stochastic sampling as model running and to describe the inter- influences among them with variable nodes in a dynamic situation that the existing TSIDs fails to capture. The new class of model is named Dynamic-Stochastic Influence Diagrams (DSIDs). The paper includes a description of the modeling formalism and the hiberarchy simulators implementing its simulation algorithm, and shows a case study to illustrate its enhancements.

Efficient STAKCERT KDD Processes in Worm Detection

This paper presents a new STAKCERT KDD processes for worm detection. The enhancement introduced in the data-preprocessing resulted in the formation of a new STAKCERT model for worm detection. In this paper we explained in detail how all the processes involved in the STAKCERT KDD processes are applied within the STAKCERT model for worm detection. Based on the experiment conducted, the STAKCERT model yielded a 98.13% accuracy rate for worm detection by integrating the STAKCERT KDD processes.

On-line Testing of Software Components for Diagnosis of Embedded Systems

This paper studies the dependability of componentbased applications, especially embedded ones, from the diagnosis point of view. The principle of the diagnosis technique is to implement inter-component tests in order to detect and locate the faulty components without redundancy. The proposed approach for diagnosing faulty components consists of two main aspects. The first one concerns the execution of the inter-component tests which requires integrating test functionality within a component. This is the subject of this paper. The second one is the diagnosis process itself which consists of the analysis of inter-component test results to determine the fault-state of the whole system. Advantage of this diagnosis method when compared to classical redundancy faulttolerant techniques are application autonomy, cost-effectiveness and better usage of system resources. Such advantage is very important for many systems and especially for embedded ones.

A Cognitive Robot Collaborative Reinforcement Learning Algorithm

A cognitive collaborative reinforcement learning algorithm (CCRL) that incorporates an advisor into the learning process is developed to improve supervised learning. An autonomous learner is enabled with a self awareness cognitive skill to decide when to solicit instructions from the advisor. The learner can also assess the value of advice, and accept or reject it. The method is evaluated for robotic motion planning using simulation. Tests are conducted for advisors with skill levels from expert to novice. The CCRL algorithm and a combined method integrating its logic with Clouse-s Introspection Approach, outperformed a base-line fully autonomous learner, and demonstrated robust performance when dealing with various advisor skill levels, learning to accept advice received from an expert, while rejecting that of less skilled collaborators. Although the CCRL algorithm is based on RL, it fits other machine learning methods, since advisor-s actions are only added to the outer layer.

Surface Plasmon Polariton Excitation by a Phase Shift Grating

We focus on the excitation and propagation properties of surface plasmon polariton (SPP). We have developed a SPP excitation device in combination with a grating structures fabricated by using the scanning probe lithography. Perturbation approach was used to investigate the coupling properties of SPP with a spatial harmonic wave supported by a metallic grating. A phase shift grating SPP coupler has been fabricated and the optical property was evaluated by the Fraunhofer diffraction formula. We have been experimentally confirmed the induced stop band by diffraction measurement. We have also observed the wavenumber shift of the resonance condition of SPP owing to effect of a phase shift.

Computational Analysis of the MembraneTargeting Domains of Plant-specific PRAF Proteins

The PRAF family of proteins is a plant specific family of proteins with distinct domain architecture and various unique sequence/structure traits. We have carried out an extensive search of the Arabidopsis genome using an automated pipeline and manual methods to verify previously known and identify unknown instances of PRAF proteins, characterize their sequence and build 3D structures of their individual domains. Integrating the sequence, structure and whatever little known experimental details for each of these proteins and their domains, we present a comprehensive characterization of the different domains in these proteins and their variant properties.

Considering Assembly Operations and Product Structure for Manufacturing Cell Formation

This paper considers the integration of assembly operations and product structure to Cellular Manufacturing System (CMS) design so that to correct the drawbacks of previous researches in the literature. For this purpose, a new mathematical model is developed which dedicates machining and assembly operations to manufacturing cells while the objective function is to minimize the intercellular movements resulting due to both of them. A linearization method is applied to achieve optimum solution through solving aforementioned nonlinear model by common programming language such as Lingo. Then, using different examples and comparing the results, the importance of integrating assembly considerations is demonstrated.

Integrating LCA into PDM for Ecodesign

Product Data Management (PDM) systems for Computer Aided Design (CAD) file management are widely established in design processes. This management system is indispensable for design collaboration or when design task distribution is present. It is thus surprising that engineering design curricula has not paid much attention in the education of PDM systems. This is also the case for eduction of ecodesign and environmental evaluation of products. With the rise of sustainability as a strategic aspect in companies, environmental concerns are becoming a key issue in design. This paper discusses the establishment of a PDM platform to be used among technical and vocational schools in Austria. The PDM system facilitates design collaboration among these schools. Further, it will be discussed how the PDM system has been prepared in order to facilitate environmental evaluation of parts, components and subassemblies of a product. By integrating a Business Intelligence solution, environmental Life Cycle Assessment and communication of results is enabled.

Extensions to Some AOSE Methodologies

This paper looks into areas not covered by prominent Agent-Oriented Software Engineering (AOSE) methodologies. Extensive paper review led to the identification of two issues, first most of these methodologies almost neglect semantic web and ontology. Second, as expected, each one has its strength and weakness and may focus on some phases of the development lifecycle but not all of the phases. The work presented here builds extensions to a highly regarded AOSE methodology (MaSE) in order to cover the areas that this methodology does not concentrate on. The extensions include introducing an ontology stage for semantic representation and integrating early requirement specification from a methodology which mainly focuses on that. The integration involved developing transformation rules (with the necessary handling of nonmatching notions) between the two sets of representations and building the software which automates the transformation. The application of this integration on a case study is also presented in the paper. The main flow of MaSE stages was changed to smoothly accommodate the new additions.