A Novel Fuzzy Technique for Image Noise Reduction

A new fuzzy filter is presented for noise reduction of images corrupted with additive noise. The filter consists of two stages. In the first stage, all the pixels of image are processed for determining noisy pixels. For this, a fuzzy rule based system associates a degree to each pixel. The degree of a pixel is a real number in the range [0,1], which denotes a probability that the pixel is not considered as a noisy pixel. In the second stage, another fuzzy rule based system is employed. It uses the output of the previous fuzzy system to perform fuzzy smoothing by weighting the contributions of neighboring pixel values. Experimental results are obtained to show the feasibility of the proposed filter. These results are also compared to other filters by numerical measure and visual inspection.

Estimating Cost of R&D Activities for Feasibility Study of Public R&D Investment

Since the feasibility study of R&D programs have been initiated for efficient public R&D investments, year 2008, feasibility studies have improved in terms of precision. Although experience related to these studies of R&D programs have increased to a certain point, still methodological improvement is required. The feasibility studies of R&D programs are consisted of various viewpoints, such as technology, policy, and economics. This research is to provide improvement methods to the economic perspective; especially the cost estimation process of R&D activities. First of all, the fundamental concept of cost estimation is reviewed. After the review, a statistical and econometric analysis method is applied as empirical analysis. Conclusively, limitations and further research directions are provided.

Fuzzy Logic Control of Static Var Compensator for Power System Damping

Static Var Compensator (SVC) is a shunt type FACTS device which is used in power system primarily for the purpose of voltage and reactive power control. In this paper, a fuzzy logic based supplementary controller for Static Var Compensator (SVC) is developed which is used for damping the rotor angle oscillations and to improve the transient stability of the power system. Generator speed and the electrical power are chosen as input signals for the Fuzzy Logic Controller (FLC). The effectiveness and feasibility of the proposed control is demonstrated with Single Machine Infinite Bus (SMIB) system and multimachine system (WSCC System) which show improvement over the use of a fixed parameter controller.

Application of Acidithiobacillus ferrooxidans in Desulfurization of US Coal: 10 L Batch Stirred Reactor Study

The desulfurization of coal using biological methods is an emerging technology. The biodesulfurization process uses the catalytic activity of chemolithotrophic acidpohiles in removing sulfur and pyrite from the coal. The present study was undertaken to examine the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 10 L batch stirred tank reactor having 10% pulp density of coal. The reactor was operated under mesophilic conditions and aerobic conditions were maintained by sparging the air into the reactor. After 35 days of experiment, about 64% of pyrite and 21% of pyritic sulfur was removed from the coal. The findings of the present study indicate that the biodesulfurization process does have potential in treating the high pyrite and sulfur containing coal. A good mass balance was also obtained with net loss of about 5% showing its feasibility for large scale application.

Preliminary Assessment of Feasibility of a Wind Energy Conversion System for a Martian Probe or Surface Rover

Nuclear energy sources have been widely used in the past decades in order to power spacecraft subsystems. Nevertheless, their use has attracted controversy because of the risk of harmful material released into the atmosphere if an accident were to occur during the launch phase of the mission, leading to the general adoption of photovoltaic systems. As compared to solar cells, wind turbines have a great advantage on Mars, as they can continuously produce power both during dust storms and at night-time: this paper focuses on the potential of a wind energy conversion system (WECS) considering the atmospheric conditions on Mars. Wind potential on Martian surface has been estimated, as well as the average energy requirements of a Martian probe or surface rover. Finally, the expected daily energy output of the WECS has been computed on the basis of both the swept area of the rotor and the equivalent wind speed at the landing site.

Fabrication and Analysis of Bulk SiCp Reinforced Aluminum Metal Matrix Composites using Friction Stir Process

In this study, Friction Stir Processing (FSP) a recent grain refinement technique was employed to disperse micron-sized (2 *m) SiCp particles into aluminum alloy AA6063. The feasibility to fabricate bulk composites through FSP was analyzed and experiments were conducted at different traverse speeds and wider volumes of the specimens. Micro structural observation were carried out by employing optical microscopy test of the cross sections in both parallel and perpendicular to the tool traverse direction. Mechanical property including micro hardness was evaluated in detail at various regions on the specimen. The composites had an excellent bonding with aluminum alloy substrate and a significant increase of 30% in the micro hardness value of metal matrix composite (MMC) as to that of the base metal has observed. The observations clearly indicate that SiC particles were uniformly distributed within the aluminum matrix.

Existence and Exponential Stability of Almost Periodic Solution for Recurrent Neural Networks on Time Scales

In this paper, a class of recurrent neural networks (RNNs) with variable delays are studied on almost periodic time scales, some sufficient conditions are established for the existence and global exponential stability of the almost periodic solution. These results have important leading significance in designs and applications of RNNs. Finally, two examples and numerical simulations are presented to illustrate the feasibility and effectiveness of the results.

Automation of the Maritime UAV Command, Control, Navigation Operations, Simulated in Real-Time Using Kinect Sensor: A Feasibility Study

This paper describes the process used in the automation of the Maritime UAV commands using the Kinect sensor. The AR Drone is a Quadrocopter manufactured by Parrot [1] to be controlled using the Apple operating systems such as iPhones and Ipads. However, this project uses the Microsoft Kinect SDK and Microsoft Visual Studio C# (C sharp) software, which are compatible with Windows Operating System for the automation of the navigation and control of the AR drone. The navigation and control software for the Quadrocopter runs on a windows 7 computer. The project is divided into two sections; the Quadrocopter control system and the Kinect sensor control system. The Kinect sensor is connected to the computer using a USB cable from which commands can be sent to and from the Kinect sensors. The AR drone has Wi-Fi capabilities from which it can be connected to the computer to enable transfer of commands to and from the Quadrocopter. The project was implemented in C#, a programming language that is commonly used in the automation systems. The language was chosen because there are more libraries already established in C# for both the AR drone and the Kinect sensor. The study will contribute toward research in automation of systems using the Quadrocopter and the Kinect sensor for navigation involving a human operator in the loop. The prototype created has numerous applications among which include the inspection of vessels such as ship, airplanes and areas that are not accessible by human operators.

Application of Robot Formation Scheme for Screening Solar Energy in a Greenhouse

Many agricultural and especially greenhouse applications like plant inspection, data gathering, spraying and selective harvesting could be performed by robots. In this paper multiple nonholonomic robots are used in order to create a desired formation scheme for screening solar energy in a greenhouse through data gathering. The formation consists from a leader and a team member equipped with appropriate sensors. Each robot is dedicated to its mission in the greenhouse that is predefined by the requirements of the application. The feasibility of the proposed application includes experimental results with three unmanned ground vehicles (UGV).

The Feasibility of Augmenting an Augmented Reality Image Card on a Quick Response Code

This research attempts to study the feasibility of augmenting an augmented reality (AR) image card on a Quick Response (QR) code. The authors have developed a new visual tag, which contains a QR code and an augmented AR image card. The new visual tag has features of reading both of the revealed data of the QR code and the instant data from the AR image card. Furthermore, a handheld communicating device is used to read and decode the new visual tag, and then the concealed data of the new visual tag can be revealed and read through its visual display. In general, the QR code is designed to store the corresponding data or, as a key, to access the corresponding data from the server through internet. Those reveled data from the QR code are represented in text. Normally, the AR image card is designed to store the corresponding data in 3-Dimensional or animation/video forms. By using QR code's property of high fault tolerant rate, the new visual tag can access those two different types of data by using a handheld communicating device. The new visual tag has an advantage of carrying much more data than independent QR code or AR image card. The major findings of this research are: 1) the most efficient area for the designed augmented AR card augmenting on the QR code is 9% coverage area out of the total new visual tag-s area, and 2) the best location for the augmented AR image card augmenting on the QR code is located in the bottom-right corner of the new visual tag.

Market Feasibility for New Brand Coffee House: The Case Study of Thailand

This research aimed to study the market feasibility for new brand coffee house, the case study of Thailand.. This study is a mixed methods research combining quantitative research and the qualitative research. Primary data 350 sets of questionnaires were distributed, and the high quality completed questionnaires of 320 sets returned. Research samples are identified as customers’ of Hi-end department stores in Thailand. The sources of secondary data were critical selected from highly reliable sources, both from public and private sectors. The results were used to classify the customer group into two main groups, the younger than 25 and the older than 25years old. Results of the younger group, are give priority to the dimension of coffee house and its services dimension more than others, then branding dimension and the product dimension respectively. On the other hand, the older group give the difference result as they rate the important of the branding, coffee house and its services, then the product respectively. Coffee consuming is not just the trend but it has become part of people lifestyle. And the new cultures also created by the wise businessman. Coffee was long produced and consumed in Thailand. But it is surprisingly the hi-end brand coffee houses in Thai market are mostly imported brands. The café business possibility for Thai brand coffee house in Thai market were discussed in the paper.

Simulating Discrete Time Model Reference Adaptive Control System with Great Initial Error

This article is based on the technique which is called Discrete Parameter Tracking (DPT). First introduced by A. A. Azab [8] which is applicable for less order reference model. The order of the reference model is (n-l) and n is the number of the adjustable parameters in the physical plant. The technique utilizes a modified gradient method [9] where the knowledge of the exact order of the nonadaptive system is not required, so, as to eliminate the identification problem. The applicability of the mentioned technique (DPT) was examined through the solution of several problems. This article introduces the solution of a third order system with three adjustable parameters, controlled according to second order reference model. The adjustable parameters have great initial error which represent condition. Computer simulations for the solution and analysis are provided to demonstrate the simplicity and feasibility of the technique.

Robust BIBO Stabilization Analysis for Discrete-time Uncertain System

The discrete-time uncertain system with time delay is investigated for bounded input bounded output (BIBO). By constructing an augmented Lyapunov function, three different sufficient conditions are established for BIBO stabilization. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. Two numerical examples are provided to demonstrate the effectiveness of the derived results.

Numerical and Experimental Investigations on Jet Impingement Cooling

Effective cooling of electronic equipment has emerged as a challenging and constraining problem of the new century. In the present work the feasibility and effectiveness of jet impingement cooling on electronics were investigated numerically and experimentally. Studies have been conducted to see the effect of the geometrical parameters such as jet diameter (D), jet to target spacing (Z) and ratio of jet spacing to jet diameter (Z/D) on the heat transfer characteristics. The values of Reynolds numbers considered are in the range 7000 to 42000. The results obtained from the numerical studies are validated by conducting experiments. From the studies it is found that the optimum value of Z/D ratio is 5. For a given Reynolds number, the Nusselt number increases by about 28% if the diameter of the nozzle is increased from 1mm to 2mm. Correlations are proposed for Nusselt number in terms of Reynolds number and these are valid for air as the cooling medium.

A Preliminary Technology Assessment Analysis for the use of High Pressure Treatment on Halloumi Cheese

This paper presents preliminary results of a technology assessment analysis for the use of high pressure treatment (HPT) on Halloumi cheese. In particular, it presents the importance of this traditional Cyprus cheese to the island-s economy, explains its production process, and gives a brief introduction to HPT and its application on cheese. More importantly, it offers preliminary results of HPT of Halloumi samples and a preliminary economic feasibility study on the financial implications of the introduction of such technology.

Sensitivity of the SHARC Model to Variations of Manning Coefficient and Effect of “n“ on the Sediment Materials Entry into the Eastern Water intake- A Case in the Dez Diversion Weir in Iran

Permanent rivers are the main sources of renewable water supply for the croplands under the irrigation and drainage schemes. They are also the major source of sediment loads transport into the storage reservoirs of the hydro-electrical dams, diversion weirs and regulating dams. Sedimentation process results from soil erosion which is related to poor watershed management and human intervention ion in the hydraulic regime of the rivers. These could change the hydraulic behavior and as such, leads to riverbed and river bank scouring, the consequences of which would be sediment load transport into the dams and therefore reducing the flow discharge in water intakes. The present paper investigate sedimentation process by varying the Manning coefficient "n" by using the SHARC software along the watercourse in the Dez River. Results indicated that the optimum "n" within that river range is 0.0315 at which quantity minimum sediment loads are transported into the Eastern intake. Comparison of the model results with those obtained by those from the SSIIM software within the same river reach showed a very close proximity between them. This suggests a relative accuracy with which the model can simulate the hydraulic flow characteristics and therefore its suitability as a powerful analytical tool for project feasibility studies and project implementation.

Genetic Algorithm Based Optimal Control for a 6-DOF Non Redundant Stewart Manipulator

Applicability of tuning the controller gains for Stewart manipulator using genetic algorithm as an efficient search technique is investigated. Kinematics and dynamics models were introduced in detail for simulation purpose. A PD task space control scheme was used. For demonstrating technique feasibility, a Stewart manipulator numerical-model was built. A genetic algorithm was then employed to search for optimal controller gains. The controller was tested onsite a generic circular mission. The simulation results show that the technique is highly convergent with superior performance operating for different payloads.

Kernel’s Parameter Selection for Support Vector Domain Description

Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.

Proposed Developments of Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of DSA, where it is a digital signature scheme designed to provide a digital signature based on a secret number known only to the signer and also on the actual message being signed. These digital signatures are considered the digital counterparts to handwritten signatures, and are the basis for validating the authenticity of a connection. The security of these schemes results from the infeasibility to compute the signature without the private key. In this paper we introduce a proposed to development the original ECDSA with more complexity.

Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map

Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.