Effect of Pulp Density on Biodesulfurization of Mongolian Lignite Coal

Biological processes based on oxidation of sulfur compounds by chemolithotrophic microorganisms are emerging as an efficient and eco-friendly technique for removal of sulfur from the coal. In the present article, study was carried out to investigate the potential of biodesulfurization process in removing the sulfur from lignite coal sample collected from a Mongolian coal mine. The batch biodesulfurization experiments were conducted in 2.5 L borosilicate baffle type reactors at 35 ºC using Acidithiobacillus ferrooxidans. The effect of pulp density on efficiency of biodesulfurization was investigated at different solids concentration (1-10%) of coal. The results of the present study suggested that the rate of desulfurization was retarded at higher coal pulp density. The optimum pulp density found 5% at which about 48% of the total sulfur was removed from the coal.

Depyritization of US Coal Using Iron-Oxidizing Bacteria: Batch Stirred Reactor Study

Microbial depyritization of coal using chemoautotrophic bacteria is gaining acceptance as an efficient and eco-friendly technique. The process uses the metabolic activity of chemoautotrophic bacteria in removing sulfur and pyrite from the coal. The aim of the present study was to investigate the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 8L bench scale stirred tank reactor having 1% (w/v) pulp density of coal. The reactor was operated at 35ºC and aerobic conditions were maintained by sparging the air into the reactor. It was found that at the end of bio-depyritization process, about 90% of pyrite and 67% of pyritic sulfur was removed from the coal. The results indicate that the bio-depyritization process is an efficient process in treating the high pyrite and sulfur containing coal. 

Comparison of Bioleaching of Metals from Spent Petroleum Catalyst Using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans

The present investigation deals with bioleaching of spent petroleum catalyst using At. ferrooxidans and At. thiooxidans. The spent catalyst used in the present study was pretreated with acetone to remove the oily hydrocarbons. FESEM and XPS analysis indicated the presence of metals in sulfide and oxide forms in spent catalyst. Both At. ferrooxidans and At. thiooxidans were found to be highly effective in producing the acid. Bioleaching with At. ferrooxidans and At. thiooxidans led to higher recovery of metals compare to control. During bioleaching similar recoveries of metals were obtained using At. ferrooxidans and At. thiooxidans. This might be due to the presence of metals as soluble oxides and sulphides in the spent catalyst. At the end of bioleaching, about 87-90% Ni, 34% Al, 65-73% Mo and 92-97% V were leached using above bacteria. It is elucidated that bioleaching with At. thiooxidans is comparatively more advantageous due to lower cost of sulphur.  

Bioleaching of Heavy Metals from Sewage Sludge Using Indigenous Iron-Oxidizing Microorganisms: Effect of Substrate Concentration and Total Solids

In the present study, the effect of ferrous sulfate concentration and total solids on bioleaching of heavy metals from sewage sludge has been examined using indigenous iron-oxidizing microorganisms. The experiments on effects of ferrous sulfate concentrations on bioleaching were carried out using ferrous sulfate of different concentrations (5-20 g L-1) to optimize the concentration of ferrous sulfate for maximum bioleaching. A rapid change in the pH and ORP took place in first 2 days followed by a slow change till 16th day in all the sludge samples. A 10 g L-1 ferrous sulfate concentration was found to be sufficient in metal bioleaching in the following order: Zn: 69%>Cu: 52%>Cr: 46%>Ni: 45. Further, bioleaching using 10 g/L ferrous sulfate was found to be efficient up to 20 g L-1 sludge solids concentration. The results of the present study strongly indicate that using 10 g L-1 ferrous sulfate indigenous iron-oxidizing microorganisms can bring down pH to a value needed for significant metal solubilization.

Application of Acidithiobacillus ferrooxidans in Desulfurization of US Coal: 10 L Batch Stirred Reactor Study

The desulfurization of coal using biological methods is an emerging technology. The biodesulfurization process uses the catalytic activity of chemolithotrophic acidpohiles in removing sulfur and pyrite from the coal. The present study was undertaken to examine the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 10 L batch stirred tank reactor having 10% pulp density of coal. The reactor was operated under mesophilic conditions and aerobic conditions were maintained by sparging the air into the reactor. After 35 days of experiment, about 64% of pyrite and 21% of pyritic sulfur was removed from the coal. The findings of the present study indicate that the biodesulfurization process does have potential in treating the high pyrite and sulfur containing coal. A good mass balance was also obtained with net loss of about 5% showing its feasibility for large scale application.